network.py 17.7 KB
Newer Older
R
Renwb1991 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
import sys
import os
import math
import numpy as np


def import_fluid():
    import paddle.fluid as fluid
    return fluid


def layer(op):
    '''Decorator for composable network layers.'''

    def layer_decorated(self, *args, **kwargs):
        # Automatically set a name if not provided.
        name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
        # Figure out the layer inputs.
        if len(self.terminals) == 0:
            raise RuntimeError('No input variables found for layer %s.' % name)
        elif len(self.terminals) == 1:
            layer_input = self.terminals[0]
        else:
            layer_input = list(self.terminals)

        self.layer_reverse_trace[name] = layer_input
        # Perform the operation and get the output.
        layer_output = op(self, layer_input, *args, **kwargs)
        # Add to layer LUT.
        self.layers[name] = layer_output
        self.var2name[layer_output.name] = (name, layer_output)

        # This output is now the input for the next layer.
        self.feed(layer_output)
        # Return self for chained calls.
        return self

    return layer_decorated


class Network(object):
    def __init__(self, inputs, trainable=True):
        # The input nodes for this network
        self.inputs = inputs
        # The current list of terminal nodes
        self.terminals = []
        # Mapping from layer names to layers
        self.layers = dict(inputs)
        # If true, the resulting variables are set as trainable
        self.trainable = trainable
        # Switch variable for dropout
        self.paddle_env = None
        self.output_names = []
        self.name_trace = None

        self.layer_reverse_trace = {}
        self.var2name = {}
        self.setup()

    def setup(self):
        '''Construct the network. '''
        raise NotImplementedError('Must be implemented by the subclass.')

    def locate_ancestor(self, v, which=[0], ancestor_level=1):
        """ find a ancestor for a node 'v' which is a fluid variable
        """
        ancestor = None
        which = which * ancestor_level
        name = self.var2name[v.name][0]

        for i in range(ancestor_level):
            v = self.layer_reverse_trace[name]
            if type(v) is list:
                ancestor = self.var2name[v[which[i]].name]
            else:
                ancestor = self.var2name[v.name]
            name = ancestor[0]
        return ancestor

    def load(self, data_path, exe=None, place=None, ignore_missing=False):
        '''Load network weights.
        data_path: The path to the numpy-serialized network weights
        ignore_missing: If true, serialized weights for missing layers are ignored.
        '''
        fluid = import_fluid()
        #load fluid mode directly
        if os.path.isdir(data_path):
            assert (exe is not None), \
                'must provide a executor to load fluid model'
            fluid.io.load_persistables(executor=exe, dirname=data_path)
            return True

        #load model from a npy file
        if exe is None or place is None:
            if self.paddle_env is None:
                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                self.paddle_env = {'place': place, 'exe': exe}
                exe = exe.run(fluid.default_startup_program())
            else:
                place = self.paddle_env['place']
                exe = self.paddle_env['exe']

        data_dict = np.load(data_path).item()
        for op_name in data_dict:
            if op_name == 'caffe2fluid_name_trace':
                self.name_trace = data_dict[op_name]
                continue

            layer = self.layers[op_name]
            for param_name, data in data_dict[op_name].iteritems():
                try:
                    name = '%s_%s' % (op_name, param_name)
                    v = fluid.global_scope().find_var(name)
                    w = v.get_tensor()
                    w.set(data.reshape(w.shape()), place)
                except ValueError:
                    if not ignore_missing:
                        raise
        return True

    def feed(self, *args):
        '''Set the input(s) for the next operation by replacing the terminal nodes.
        The arguments can be either layer names or the actual layers.
        '''
        assert len(args) != 0
        self.terminals = []
        for fed_layer in args:
            if isinstance(fed_layer, basestring):
                try:
                    fed_layer = self.layers[fed_layer]
                except KeyError:
                    raise KeyError('Unknown layer name fed: %s' % fed_layer)
            self.terminals.append(fed_layer)
        return self

    def get_output(self):
        '''Returns the current network output.'''
        return self.terminals[-1]

    def get_unique_name(self, prefix):
        '''Returns an index-suffixed unique name for the given prefix.
        This is used for auto-generating layer names based on the type-prefix.
        '''
        ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
        return '%s_%d' % (prefix, ident)

    def get_unique_output_name(self, prefix, layertype):
        '''Returns an index-suffixed unique name for the given prefix.
            This is used for auto-generating layer names based on the type-prefix.
        '''
        ident = sum(t.startswith(prefix) for t in self.output_names) + 1
        unique_name = '%s.%s.output.%d' % (prefix, layertype, ident)
        self.output_names.append(unique_name)
        return unique_name

    @layer
    def conv(self,
             input,
             k_h,
             k_w,
             c_o,
             s_h,
             s_w,
             name,
             relu=True,
             relu_negative_slope=0.0,
             padding=None,
             dilation=1,
             group=1,
             biased=True):
        if padding is None:
            padding = [0, 0]

        # Get the number of channels in the input
        c_i, h_i, w_i = input.shape[1:]

        # Verify that the grouping parameter is valid
        assert c_i % group == 0
        assert c_o % group == 0

        fluid = import_fluid()
        prefix = name + '_'
        leaky_relu = False
        act = 'relu'
        if relu is False:
            act = None
        elif relu_negative_slope != 0.0:
            leaky_relu = True
            act = None

        output = fluid.layers.conv2d(
            name=self.get_unique_output_name(name, 'conv2d'),
            input=input,
            filter_size=[k_h, k_w],
            num_filters=c_o,
            stride=[s_h, s_w],
            padding=padding,
            dilation=dilation,
            groups=group,
            param_attr=fluid.ParamAttr(name=prefix + "weights"),
            bias_attr=fluid.ParamAttr(name=prefix + "biases"),
            act=act)

        if leaky_relu:
            output = fluid.layers.leaky_relu(output, alpha=relu_negative_slope)

        return output

    @layer
    def deconv(self,
               input,
               k_h,
               k_w,
               c_o,
               s_h,
               s_w,
               name,
               relu=True,
               relu_negative_slope=0.0,
               padding=None,
               dilation=1,
               biased=True):
        if padding is None:
            padding = [0, 0]

        # Get the number of channels in the input
        c_i, h_i, w_i = input.shape[1:]

        fluid = import_fluid()
        prefix = name + '_'
        leaky_relu = False
        act = 'relu'
        if relu is False:
            act = None
        elif relu_negative_slope != 0.0:
            leaky_relu = True
            act = None

        p_h = padding[0]
        p_w = padding[1]
        h_o = (h_i - 1) * s_h - 2 * p_h + dilation * (k_h - 1) + 1
        w_o = (w_i - 1) * s_w - 2 * p_w + dilation * (k_w - 1) + 1
        output = fluid.layers.conv2d_transpose(
            name=self.get_unique_output_name(name, 'conv2d_transpose'),
            input=input,
            num_filters=c_o,
            output_size=[h_o, w_o],
            filter_size=[k_h, k_w],
            padding=padding,
            stride=[s_h, s_w],
            dilation=dilation,
            param_attr=fluid.ParamAttr(name=prefix + "weights"),
            bias_attr=fluid.ParamAttr(name=prefix + "biases"),
            act=act)

        if leaky_relu:
            output = fluid.layers.leaky_relu(output, alpha=relu_negative_slope)

        return output

    @layer
    def relu(self, input, name):
        fluid = import_fluid()
        output = fluid.layers.relu(input)
        return output

    @layer
    def prelu(self, input, channel_shared, name):
        fluid = import_fluid()
        if channel_shared:
            mode = 'all'
        else:
            mode = 'channel'

        prefix = name + '_'
        output = fluid.layers.prelu(
            input,
            mode=mode,
            param_attr=fluid.ParamAttr(name=prefix + 'negslope'))
        return output

    def pool(self,
             pool_type,
             input,
             k_h,
             k_w,
             s_h,
             s_w,
             ceil_mode,
             padding,
             name,
             exclusive=True):
        # Get the number of channels in the input
        in_hw = input.shape[2:]
        k_hw = [k_h, k_w]
        s_hw = [s_h, s_w]

        fluid = import_fluid()
        output = fluid.layers.pool2d(
            name=name,
            input=input,
            pool_size=k_hw,
            pool_stride=s_hw,
            pool_padding=padding,
            ceil_mode=ceil_mode,
            pool_type=pool_type,
            exclusive=exclusive)
        return output

    @layer
    def max_pool(self,
                 input,
                 k_h,
                 k_w,
                 s_h,
                 s_w,
                 ceil_mode,
                 padding=[0, 0],
                 name=None):
        return self.pool(
            'max',
            input,
            k_h,
            k_w,
            s_h,
            s_w,
            ceil_mode,
            padding,
            name=self.get_unique_output_name(name, 'max_pool'))

    @layer
    def avg_pool(self,
                 input,
                 k_h,
                 k_w,
                 s_h,
                 s_w,
                 ceil_mode,
                 padding=[0, 0],
                 name=None):
        return self.pool(
            'avg',
            input,
            k_h,
            k_w,
            s_h,
            s_w,
            ceil_mode,
            padding,
            name=self.get_unique_output_name(name, 'avg_pool'),
            exclusive=False)

    @layer
    def sigmoid(self, input, name):
        fluid = import_fluid()
        return fluid.layers.sigmoid(
            input, name=self.get_unique_output_name(name, 'sigmoid'))

    @layer
    def tanh(self, input, name):
        fluid = import_fluid()
        return fluid.layers.tanh(
            input, name=self.get_unique_output_name(name, 'tanh'))

    @layer
    def lrn(self, input, radius, alpha, beta, name, bias=1.0):
        fluid = import_fluid()
        output = fluid.layers.lrn(input=input,
                                  n=radius,
                                  k=bias,
                                  alpha=alpha,
                                  beta=beta,
                                  name=self.get_unique_output_name(name, 'lrn'))
        return output

    @layer
    def concat(self, inputs, axis, name):
        fluid = import_fluid()
        output = fluid.layers.concat(
            input=inputs,
            axis=axis,
            name=self.get_unique_output_name(name, 'concat'))
        return output

    @layer
    def add(self, inputs, name):
        fluid = import_fluid()
        output = inputs[0]
        for i in inputs[1:]:
            output = fluid.layers.elementwise_add(
                x=output, y=i, name=self.get_unique_output_name(name, 'add'))
        return output

    @layer
    def max(self, inputs, name):
        fluid = import_fluid()
        output = inputs[0]
        for i in inputs[1:]:
            output = fluid.layers.elementwise_max(
                x=output, y=i, name=self.get_unique_output_name(name, 'max'))
        return output

    @layer
    def multiply(self, inputs, name):
        fluid = import_fluid()
        output = inputs[0]
        for i in inputs[1:]:
            output = fluid.layers.elementwise_mul(
                x=output, y=i, name=self.get_unique_output_name(name, 'mul'))
        return output

    @layer
    def fc(self, input, num_out, name, relu=True, act=None):
        fluid = import_fluid()

        if act is None:
            act = 'relu' if relu is True else None

        prefix = name + '_'
        output = fluid.layers.fc(
            name=self.get_unique_output_name(name, 'fc'),
            input=input,
            size=num_out,
            act=act,
            param_attr=fluid.ParamAttr(name=prefix + 'weights'),
            bias_attr=fluid.ParamAttr(name=prefix + 'biases'))
        return output

    @layer
    def softmax(self, input, axis=2, name=None):
        fluid = import_fluid()
        shape = input.shape
        dims = len(shape)
        axis = axis + dims if axis < 0 else axis

        need_transpose = False
        if axis + 1 != dims:
            need_transpose = True

        if need_transpose:
            order = range(dims)
            order.remove(axis)
            order.append(axis)
            input = fluid.layers.transpose(
                input,
                perm=order,
                name=self.get_unique_output_name(name, 'transpose'))

        output = fluid.layers.softmax(
            input, name=self.get_unique_output_name(name, 'softmax'))

        if need_transpose:
            order = range(len(shape))
            order[axis] = dims - 1
            order[-1] = axis
            output = fluid.layers.transpose(
                output,
                perm=order,
                name=self.get_unique_output_name(name, 'transpose'))
        return output

    @layer
    def batch_normalization(self,
                            input,
                            name,
                            scale_offset=True,
                            eps=1e-5,
                            relu=False,
                            relu_negative_slope=0.0):
        # NOTE: Currently, only inference is supported
        fluid = import_fluid()
        prefix = name + '_'
        param_attr = None if scale_offset is False else fluid.ParamAttr(
            name=prefix + 'scale')
        bias_attr = None if scale_offset is False else fluid.ParamAttr(
            name=prefix + 'offset')
        mean_name = prefix + 'mean'
        variance_name = prefix + 'variance'

        leaky_relu = False
        act = 'relu'
        if relu is False:
            act = None
        elif relu_negative_slope != 0.0:
            leaky_relu = True
            act = None

        output = fluid.layers.batch_norm(
            name=self.get_unique_output_name(name, 'batch_norm'),
            input=input,
            is_test=True,
            param_attr=param_attr,
            bias_attr=bias_attr,
            moving_mean_name=mean_name,
            moving_variance_name=variance_name,
            epsilon=eps,
            act=act)

        if leaky_relu:
            output = fluid.layers.leaky_relu(output, alpha=relu_negative_slope)

        return output

    @layer
    def dropout(self, input, drop_prob, name, is_test=True):
        fluid = import_fluid()
        if is_test:
            output = input
        else:
            output = fluid.layers.dropout(
                input,
                dropout_prob=drop_prob,
                is_test=is_test,
                name=self.get_unique_output_name(name, 'dropout'))
        return output

    @layer
    def scale(self, input, axis=1, num_axes=1, name=None):
        fluid = import_fluid()

        assert num_axes == 1, "layer scale not support this num_axes[%d] now" % (
            num_axes)

        prefix = name + '_'
        scale_shape = input.shape[axis:axis + num_axes]
        param_attr = fluid.ParamAttr(name=prefix + 'scale')
        scale_param = fluid.layers.create_parameter(
            shape=scale_shape,
            dtype=input.dtype,
            name=name,
            attr=param_attr,
            is_bias=True,
            default_initializer=fluid.initializer.Constant(value=1.0))

        offset_attr = fluid.ParamAttr(name=prefix + 'offset')
        offset_param = fluid.layers.create_parameter(
            shape=scale_shape,
            dtype=input.dtype,
            name=name,
            attr=offset_attr,
            is_bias=True,
            default_initializer=fluid.initializer.Constant(value=0.0))

        output = fluid.layers.elementwise_mul(
            input,
            scale_param,
            axis=axis,
            name=self.get_unique_output_name(name, 'scale_mul'))
        output = fluid.layers.elementwise_add(
            output,
            offset_param,
            axis=axis,
            name=self.get_unique_output_name(name, 'scale_add'))
        return output

    def custom_layer_factory(self):
        """ get a custom layer maker provided by subclass
        """
        raise NotImplementedError(
            '[custom_layer_factory] must be implemented by the subclass.')

    @layer
    def custom_layer(self, inputs, kind, name, *args, **kwargs):
        """ make custom layer
        """
        #FIX ME:
        #   there is a trick for different API between caffe and paddle
        if kind == "DetectionOutput":
            conf_var = inputs[1]
            real_conf_var = self.locate_ancestor(conf_var, ancestor_level=2)
            inputs[1] = real_conf_var[1]

        name = self.get_unique_output_name(name, kind)
        layer_factory = self.custom_layer_factory()
        return layer_factory(kind, inputs, name, *args, **kwargs)