onnx_decoder.py 17.6 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
from x2paddle.core.fluid_code import FluidCode
from onnx.checker import ValidationError
from onnx.checker import check_model
from onnx.utils import polish_model
from onnx import helper
from onnx.helper import get_attribute_value, make_attribute
from onnx.shape_inference import infer_shapes
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
from onnx.numpy_helper import to_array
C
channingss 已提交
25
from onnx import AttributeProto, TensorProto, GraphProto
C
update  
channingss 已提交
26 27
from collections import OrderedDict as Dict
import onnx
C
channingss 已提交
28
from onnx.helper import ValueInfoProto
C
update  
channingss 已提交
29 30
import numpy as np
from copy import deepcopy
C
channingss 已提交
31
import logging as _logging
C
channingss 已提交
32
import os
C
update  
channingss 已提交
33 34

default_op_domain = 'ai.onnx'
C
channingss 已提交
35
_logger = _logging.getLogger(__name__)
C
update  
channingss 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48


class ONNXGraphNode(GraphNode):
    def __init__(self, layer, layer_name=None):
        if layer_name is None:
            super(ONNXGraphNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphNode, self).__init__(layer, layer_name)
        self.layer_type = layer.op_type
        self.fluid_code = FluidCode()
        self.attr_map = self.get_attr_map()
        self.dtype_map = {1: "float32", 3: "int32", 9: "int64"}
        self.weight_inputs = list()
C
channingss 已提交
49
        self.out_shapes = list()
C
update  
channingss 已提交
50
        self.dtype = None
C
channingss 已提交
51
        self.which_child = {}
C
update  
channingss 已提交
52 53 54 55 56 57 58 59 60 61 62 63

    def get_attr_map(self):
        """
        convert ONNX node attributes to dict
        """
        return {
            attr.name: self.get_attribute_value2(attr)
            for attr in self.layer.attribute
        }

    @property
    def value(self):
C
channingss 已提交
64 65 66
        assert 'Constant' in self.layer_type, "Only Constant | ConstantOfShape node has value."
        if 'value' not in self.attr_map:
            return None
C
channingss 已提交
67
        return self.attr_map['value']
C
update  
channingss 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    def get_attribute_value2(self, attr):
        """
        get_attribute_value enhanced
        """
        if attr.type == onnx.AttributeProto.TENSOR:
            dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type])
            data = attr.t.raw_data
            value = np.frombuffer(data,
                                  dtype=dtype,
                                  count=(len(data) // dtype.itemsize))
        elif attr.type == onnx.AttributeProto.STRING:
            value = attr.s
            value = value.decode() if isinstance(value, bytes) else value
        else:
            value = get_attribute_value(attr)
        return value

    def get_attr(self, name, default=None):
        """
        get_attribute_value from attr_map
        """
        if name not in self.attr_map:
            return default
        return self.attr_map[name]


class ONNXGraphDataNode(GraphNode):
    def __init__(self, layer, layer_name=None, is_global_input=False):
        if layer_name is None:
            super(ONNXGraphDataNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphDataNode, self).__init__(layer, layer_name)
        if is_global_input:
            self.layer_type = 'place_holder'
        else:
            self.layer_type = 'create_parameter'
        self.layer_name = layer_name
        self.fluid_code = FluidCode()
        self.weight = None
        self.embeded_as = None
C
channingss 已提交
109
        self.which_child = {}
C
update  
channingss 已提交
110 111 112

    @property
    def out_shapes(self):
C
channingss 已提交
113 114 115 116 117 118 119 120 121 122
        if isinstance(self.layer, ValueInfoProto):
            values = self.layer.type.tensor_type.shape.dim
            out_shapes = list()
            out_shapes.append([dim.dim_value for dim in values])
            return out_shapes
        else:
            values = self.layer.dims
            out_shapes = list()
            out_shapes.append(values)
            return out_shapes
C
update  
channingss 已提交
123 124 125

    @property
    def dtype(self):
C
channingss 已提交
126 127 128 129 130 131
        if isinstance(self.layer, ValueInfoProto):
            dtype = self.layer.type.tensor_type.elem_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
        else:
            dtype = self.layer.data_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
C
update  
channingss 已提交
132 133 134


class ONNXGraph(Graph):
C
channingss 已提交
135
    def __init__(self, onnx_model):
C
channingss 已提交
136
        super(ONNXGraph, self).__init__(onnx_model.graph)
C
channingss 已提交
137
        self.onnx_model = onnx_model
C
update  
channingss 已提交
138 139 140
        self.initializer = {}
        self.place_holder_nodes = list()
        self.get_place_holder_nodes()
C
channingss 已提交
141
        self.value_infos = self.inferred_model_value_info(self.model)
C
channingss 已提交
142
        self.results_of_inference = dict()
C
update  
channingss 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

    def get_inner_nodes(self):
        """
        generate inner node of ONNX model
        """
        inner_nodes = []
        if not isinstance(self.model, onnx.GraphProto):
            logger.error('graph is not a GraphProto instance')
            return
        for initializer in self.model.initializer:
            name = initializer.name
            inner_nodes.append(name)
        return inner_nodes

    def get_place_holder_nodes(self):
        """
        generate place_holder node of ONNX model
        """
        inner_nodes = self.get_inner_nodes()
        input_nodes = [value.name for value in self.model.input]
        for ipt_data in input_nodes:
            if ipt_data not in inner_nodes:
                self.place_holder_nodes.append(ipt_data)

    def is_place_holder_nodes(self, layer):
        """
        return layer is or not place_holder node
        """
        if layer in self.place_holder_nodes:
            return True
        return False

    def build(self):
        """
        build topo_sort of ONNX model
        """
        for layer in self.model.node:
C
channingss 已提交
180 181
            node = ONNXGraphNode(layer)
            self.node_map[layer.name] = node
C
update  
channingss 已提交
182 183 184 185 186 187 188 189

        for layer in self.model.input:
            if layer.name not in self.node_map:
                is_place_holder = self.is_place_holder_nodes(layer.name)
                self.node_map[layer.name] = ONNXGraphDataNode(
                    layer,
                    layer_name=layer.name,
                    is_global_input=is_place_holder)
C
channingss 已提交
190

C
update  
channingss 已提交
191
        #set data node's weight
C
channingss 已提交
192 193 194
        for initializer in self.model.initializer:
            name = initializer.name
            weight = to_array(initializer)
C
update  
channingss 已提交
195 196 197 198
            if name in self.node_map:
                if isinstance(self.node_map[name], ONNXGraphDataNode):
                    self.node_map[name].weight = weight
                    self.node_map[name].embeded_as = []
C
channingss 已提交
199 200 201 202 203 204
            else:
                self.node_map[name] = ONNXGraphDataNode(initializer,
                                                        layer_name=name,
                                                        is_global_input=False)
                self.node_map[name].weight = weight
                self.node_map[name].embeded_as = []
C
update  
channingss 已提交
205 206 207 208 209 210

        #generate connection between nodes for topo
        for layer_name, node in self.node_map.items():
            if isinstance(node, ONNXGraphNode):
                for idx, in_node in enumerate(node.layer.input):
                    if in_node not in self.node_map:
C
channingss 已提交
211 212 213 214 215 216 217
                        flag = 0
                        for nd in self.model.node:
                            for idx, opt in enumerate(nd.output):
                                if opt == in_node:
                                    self.connect(nd.name, layer_name)
                                    flag = 1
                                    node.which_child[nd.name] = idx
C
channingss 已提交
218
                                    self.node_map[nd.name].index = 0
C
channingss 已提交
219 220 221 222 223 224 225
                                    break
                            if flag == 1:
                                break
                        if flag == 0:
                            raise Exception(
                                'input[{}] of node[{}] does not exist in node_map'
                                .format(in_node, layer_name))
C
update  
channingss 已提交
226 227
                    else:
                        self.connect(in_node, layer_name)
C
channingss 已提交
228
        #generate topo
C
update  
channingss 已提交
229 230 231 232
        super(ONNXGraph, self).build()

        self.input_nodes = self.place_holder_nodes

C
channingss 已提交
233 234
    def get_input_node(self, node, idx=0, copy=False):
        if len(node.which_child) == 0:
C
channingss 已提交
235 236 237
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
            return ipt_node

C
channingss 已提交
238 239 240 241 242
        else:
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
            if ipt_node.layer_name in node.which_child:
                ipt_node.index = node.which_child[ipt_node.layer_name]
            return ipt_node
C
update  
channingss 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    def graph_weights(self, graph):
        """
        generator for weights
        """

        if not isinstance(graph, onnx.GraphProto):
            logger.error('graph is not a GraphProto instance')
            return

        for initializer in graph.initializer:
            name = initializer.name
            weight = to_array(initializer)
            yield name, weight

C
channingss 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    def inferred_model_value_info(self, graph):
        """
        collect value/type info for an ONNX model
        """
        assert isinstance(graph,
                          onnx.GraphProto), 'model is not a ModelProto instance'

        value_info = Dict()
        for item in graph.value_info:
            value_info[item.name] = {
                'dtype':
                TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
                'shape':
                [dim.dim_value for dim in item.type.tensor_type.shape.dim],
                'external': False
            }
        for item in graph.input:
            assert item.name not in value_info
            value_info[item.name] = {
                'dtype':
                TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
                'shape':
                [dim.dim_value for dim in item.type.tensor_type.shape.dim],
                'external': True
            }
        for item in graph.output:
C
channingss 已提交
284
            assert item.name not in value_info
C
channingss 已提交
285 286 287 288 289 290 291 292 293
            value_info[item.name] = {
                'dtype':
                TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
                'shape':
                [dim.dim_value for dim in item.type.tensor_type.shape.dim],
                'external': True
            }
        return value_info

C
update  
channingss 已提交
294 295

class ONNXDecoder(object):
C
channingss 已提交
296
    def __init__(self, onnx_model):
C
update  
channingss 已提交
297 298
        model = onnx.load(onnx_model)
        print('model ir_version: {}, op version: {}'.format(
C
channingss 已提交
299 300 301 302 303 304 305
            model.ir_version, model.opset_import[0].version))
        if model.opset_import[0].version < 9:
            _logger.warning(
                'Now, onnx2paddle main support convert onnx model opset_verison == 9,'
                'opset_verison of your onnx model is %d < 9,'
                'some operator may cannot convert.',
                model.opset_import[0].version)
C
update  
channingss 已提交
306

C
channingss 已提交
307 308
        check_model(model)
        model = onnx.shape_inference.infer_shapes(model)
C
update  
channingss 已提交
309 310 311 312 313
        model = self.optimize_model_skip_op_for_inference(model)
        model = self.optimize_model_strip_initializer(model)
        self.standardize_variable_name(model.graph)

        self.model = model
C
channingss 已提交
314
        graph = model.graph
C
channingss 已提交
315
        self.onnx_graph = ONNXGraph(model)
C
update  
channingss 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        self.onnx_graph.build()

    def build_value_refs(self, nodes):
        """
        build op reference of inputs and outputs
        """
        input_refs = Dict()
        output_refs = Dict()
        for idx, node in enumerate(nodes):
            for val_name in node.input:
                input_refs.setdefault(val_name, set()).add(idx)
            for val_name in node.output:
                output_refs.setdefault(val_name, set()).add(idx)
        return input_refs, output_refs

    def skip_node_forward(self, nodes, src_output_name, dst_input_name,
                          input_refs):
        """
        skip nodes between src_output_name -> dst_input_name and connect this pair
        """
        processed = 0
        for next_idx in input_refs[src_output_name]:
            next_node = nodes[next_idx]
            for val_idx, next_input_name in enumerate(next_node.input):
                if next_input_name == src_output_name:
                    next_node.input[val_idx] = dst_input_name
                    processed += 1
        return processed

    def skip_node_backward(self, nodes, src_input_name, dst_output_name,
                           output_refs):
        """
        skip nodes between dst_output_name -> src_input_name and connect this pair
        """
        processed = 0
        for prev_idx in output_refs[src_input_name]:
            prev_node = nodes[prev_idx]
            for val_idx, prev_output_name in enumerate(prev_node.output):
                if prev_output_name == src_input_name:
                    prev_node.output[val_idx] = dst_output_name
                    processed += 1
        return processed

    def optimize_model_skip_op_for_inference(self, model, op_list=None):
        """
        skip ops can be bypassed for inference
        """
        if op_list is None:
            op_list = ['Dropout']

        nodes = model.graph.node
        input_refs, output_refs = self.build_value_refs(nodes)
        ret = type(model)()
        ret.CopyFrom(model)
        ret_nodes = ret.graph.node
        nodes_to_remove = []
        for node_idx, node in enumerate(nodes):
            if not (node.domain == default_op_domain or node.domain == ''):
                continue
            op_type = node.op_type
            if not (op_type in op_list):
                continue
            if op_type in ['Dropout']:
                input_name = node.input[0]
                output_name = node.output[0]
            elif not (len(node.input) == 1 and len(node.output) == 1):
                print(
                    'currently only 1-input-1-output op supported, skip required %d: %s',
                    node_idx, node.op_type)
                continue
            else:
                input_name = node.input[0]
                output_name = node.output[0]

            if output_name in input_refs:
                processed = self.skip_node_forward(ret_nodes, output_name,
                                                   input_name, input_refs)
            elif input_name in output_refs:
                processed = self.skip_node_backward(ret_nodes, input_name,
                                                    output_name, output_refs)
            else:
                processed = -1
            if processed > 0:
                nodes_to_remove.append(node_idx)
C
channingss 已提交
400 401 402 403 404
                for value_info in ret.graph.value_info:
                    for output in node.output:
                        if value_info.name == output:
                            ret.graph.value_info.remove(value_info)

C
update  
channingss 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
                print('skip op {}: {} -> {} -> {}'.format(
                    node_idx, input_name, node.op_type, output_name))
            elif processed == 0:
                print('weird, no node processed')
            else:
                print('standalone op {}: {} -> {} -> {} not skipped'.format(
                    node_idx, input_name, node.op_type, output_name))

        nodes_to_remove.sort(reverse=True)
        for node_idx in nodes_to_remove:
            ret_nodes.pop(node_idx)
        return ret

    def optimize_model_strip_initializer(self, model, keep_input_only=True):
        """
        strip weights for inference
        """
        nodes = model.graph.node
        input_refs, output_refs = self.build_value_refs(nodes)
        out_names = [val.name for val in model.graph.output]

        ret = type(model)()
        ret.CopyFrom(model)
        # strip initializers
        ret.graph.ClearField('initializer')
        ret_initializers = ret.graph.initializer
        for initializer in model.graph.initializer:
            name = initializer.name
            if name in input_refs:
                ret_initializers.add().CopyFrom(initializer)
            elif not keep_input_only and name in output_refs:
                ret_initializers.add().CopyFrom(initializer)
            else:
                dtype = TENSOR_TYPE_TO_NP_TYPE[initializer.data_type]

        # strip inputs
        ret.graph.ClearField('input')
        ret_inputs = ret.graph.input
        for item in model.graph.input:
            name = item.name
            if name in input_refs or name in out_names:
                ret_inputs.add().CopyFrom(item)
        return ret

    def make_variable_name(self, name):
        """
        make a valid code name for ParamAttr
        """

        if name == '':
            raise ValueError('name should not be empty')
C
channingss 已提交
456
        for s in ' .*?\\/-:':
C
update  
channingss 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            name = name.replace(s, '_')
        return '_' + name

    def standardize_variable_name(self, graph):
        """
        standardize variable name for paddle's code
        """
        for initializer in graph.initializer:
            initializer.name = self.make_variable_name(initializer.name)
        for ipt in graph.input:
            ipt.name = self.make_variable_name(ipt.name)
        for output in graph.output:
            output.name = self.make_variable_name(output.name)
        for item in graph.value_info:
            item.name = self.make_variable_name(item.name)
        for node in graph.node:
C
channingss 已提交
473
            node.name = node.output[0]
C
update  
channingss 已提交
474 475 476 477 478
            node.name = self.make_variable_name(node.name)
            for i in range(len(node.input)):
                node.input[i] = self.make_variable_name(node.input[i])
            for i in range(len(node.output)):
                node.output[i] = self.make_variable_name(node.output[i])