interpolate_bilinear_fuser.py 11.2 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
15
import copy
S
SunAhong1993 已提交
16
import numpy as np
S
SunAhong1993 已提交
17
from x2paddle.optimizer.pattern_matcher import FuseBase
S
SunAhong1993 已提交
18 19 20 21
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *


S
renam  
SunAhong1993 已提交
22
class DygraphInterpolateBilinearFuser(FuseBase):
S
SunAhong1993 已提交
23
    def __init__(self):
S
renam  
SunAhong1993 已提交
24
        super(DygraphInterpolateBilinearFuser, self).__init__(graph_type="dygraph")
S
SunAhong1993 已提交
25
        self.pattenrs = list()
S
SunAhong1993 已提交
26 27 28 29

    def build_pattern(self):
        """ 描述需要替换的双线性插值图结构。
        interpolate_bilinear层模式python实现代码示例:
S
SunAhong1993 已提交
30 31 32 33 34 35 36 37 38 39
            x2195 = x2181.shape
            x2195 = len(x2195)
            x2196 = x2195 - 2
            x2197 = []
            for _x2199 in range(x2196):
                x2197.append(None)
            x2200 = (x2181, x8, None, None)
            ...
            x2267 = x2266 == 3
            if x2267 :
S
SunAhong1993 已提交
40
                raise RaiseException('Exception')
S
SunAhong1993 已提交
41
                x2268 = None
S
SunAhong1993 已提交
42
            else:
S
SunAhong1993 已提交
43 44 45 46 47 48 49 50 51 52 53
                x2270 = x2181.shape
                x2270 = len(x2270)
                x2271 = x2270 == 4
                if x2271 :
                    x2274 = x2197[0]
                    x2275 = x2197[1]
                    x2233_isinstance = isinstance(x2233, paddle.fluid.Variable)
                    if x2233_isinstance :
                        x2233 = x2233.numpy().tolist()
                    x2276 = paddle.nn.functional.interpolate(x=x2181, size=x2233, scale_factor=x2274, align_corners=False, align_mode=0, mode='bilinear')
                    x2272 = x2276
S
SunAhong1993 已提交
54
                else:
S
SunAhong1993 已提交
55 56 57 58
                    x2277 = x2181.shape
                    x2277 = len(x2277)
                    x2278 = x2277 == 5
                    if x2278 :
S
SunAhong1993 已提交
59 60 61
                        raise RaiseException('Exception')
                    else:
                        raise RaiseException('Exception')
S
SunAhong1993 已提交
62 63
                    x2272 = None
                x2268 = x2272
S
SunAhong1993 已提交
64 65 66 67 68
        """

        def gen_name(id):
            return "x" + str(id)

S
SunAhong1993 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        pattern = PaddleGraph(graph_type="dygraph")
        pattern.add_layer(
            "prim.shape",
            inputs={"input": "interpolate-input-0"},
            outputs=[gen_name(9)])
        pattern.add_layer(
            "prim.len",
            inputs={"input": gen_name(9)},
            outputs=[gen_name(9)])
        pattern.add_layer(
            "prim.sub",
            inputs={"x": gen_name(9)},
            outputs=[gen_name(10)],
            y=2)
        pattern.add_layer(
            "prim.list", inputs={}, outputs=[gen_name(11)])
        pattern.add_layer(
            "prim.loop",
            inputs={"input": gen_name(10)},
            outputs=[gen_name(12.1), gen_name(12.2)])
        loop_layer = pattern.layers[list(pattern.layers.keys())[
            -1]]
        pattern_block = PaddleGraph(loop_layer, graph_type="dygraph")
        pattern_block.add_layer(
            "prim.append",
            inputs={"list": gen_name(11)},
            outputs=[],
            element=None)
        loop_layer.inputs["input-0"] = gen_name(11)
        loop_layer.add_block(pattern_block)
        pattern.add_layer(
            "prim.tuple",
            inputs={
                "input0": "interpolate-input-0",
                "input1": "interpolate-input-4",
            },
            outputs=[gen_name(12)],
            input2=None,
            input3=None)

        pattern.add_layer(
            "prim.eq",
            inputs={"x": "interpolate-input-2"},
            outputs=[gen_name(10.1)],
            y=3)

        pattern.add_layer(
            "prim.if",
            inputs={"input": gen_name(10.1)},
            outputs=[gen_name(14)])
        if_layer1 = pattern.layers[list(pattern.layers.keys())[
            -1]]
        pattern_block = PaddleGraph(parent_layer=if_layer1, graph_type="dygraph")
        pattern_block.add_layer(
            "prim.exception",
            inputs={},
            outputs=[gen_name(15)],
            input="Exception")
        pattern_block.add_layer(
            "prim.equal", inputs={}, outputs=[gen_name(14)], input=None)
        if_layer1.add_block(pattern_block)
        pattern_block = PaddleGraph(parent_layer=if_layer1, graph_type="dygraph")
        pattern_block.add_layer(
            "prim.shape",
            inputs={"input": "interpolate-input-0"},
            outputs=[gen_name(18)])
        pattern_block.add_layer(
            "prim.len",
            inputs={"input": gen_name(18)},
            outputs=[gen_name(18)])
        pattern_block.add_layer(
            "prim.eq",
            inputs={"x": gen_name(18)},
            outputs=[gen_name(19)],
            y=4)


        pattern_block.add_layer(
            "prim.if",
            inputs={"input": gen_name(19)},
            outputs=[gen_name(20)])
        if_layer2 = pattern_block.layers[list(pattern_block.layers.keys())[
            -1]]
        pattern_block_block = PaddleGraph(parent_layer=if_layer2, graph_type="dygraph")            
        pattern_block_block.add_layer(
            "prim.getitem",
            inputs={"list": gen_name(11)},
            outputs=[gen_name(21)],
            element=0)
        pattern_block_block.add_layer(
            "prim.getitem",
            inputs={"list": gen_name(11)},
            outputs=[gen_name(22)],
            element=1)
        pattern_block_block.add_layer(
            "prim.isinstance",
            inputs={"input": "interpolate-input-3"},
            outputs=["interpolate-input-0_isinstance"],
            cls="paddle.fluid.Variable")
        pattern_block_block.add_layer(
            "prim.if", {"input": "interpolate-input-0_isinstance"},
            outputs=["interpolate-input-0_if1"])
        if_layer_isinstance = pattern_block_block.layers[list(
            pattern_block_block.layers.keys())[-1]]
        pattern_block_block_block = PaddleGraph(
            if_layer_isinstance, graph_type="dygraph")
        pattern_block_block_block.add_layer(
            "prim.var2list",
            inputs={"input": "interpolate-input-3"},
            outputs=["interpolate-input-3"])
        if_layer_isinstance.add_block(pattern_block_block_block)
        pattern_block_block_block = PaddleGraph(
            if_layer_isinstance, graph_type="dygraph")
        if_layer_isinstance.add_block(pattern_block_block_block)
        if_layer_isinstance.inputs["input-0"] = "interpolate-input-3"
        pattern_block_block.add_layer(
            "paddle.nn.functional.interpolate",
            inputs={
                "input": "interpolate-input-0",
                "size": "interpolate-input-3",
                "scale_factor": gen_name(21)
            },
            outputs=[gen_name(23)])
        pattern_block_block.add_layer(
            "prim.equal",
            inputs={"input": gen_name(23)},
            outputs=[gen_name(20)])
        if_layer2.add_block(pattern_block_block)
        pattern_block_block = PaddleGraph(if_layer2, graph_type="dygraph")
        pattern_block_block.add_layer(
            "prim.shape",
            inputs={"input": "interpolate-input-0"},
            outputs=[gen_name(24)])
        pattern_block_block.add_layer(
            "prim.len",
            inputs={"input": gen_name(24)},
            outputs=[gen_name(24)])
        pattern_block_block.add_layer(
            "prim.eq",
            inputs={"x": gen_name(24)},
            outputs=[gen_name(25)],
            y=5)
        pattern_block_block.add_layer(
            "prim.if",
            inputs={"input": gen_name(25)},
            outputs=[gen_name(26)])
        if_layer3 = pattern_block_block.layers[list(
            pattern_block_block.layers.keys())[-1]]
        pattern_block_block_block = PaddleGraph(
            parent_layer=if_layer3, graph_type="dygraph")
        pattern_block_block_block.add_layer(
            "prim.exception",
            inputs={},
            outputs=[gen_name(27)],
            input="Exception")
        if_layer3.add_block(pattern_block_block_block)
        pattern_block_block_block = PaddleGraph(
            parent_layer=if_layer3, graph_type="dygraph")
        pattern_block_block_block.add_layer(
            "prim.exception",
            inputs={},
            outputs=[gen_name(28)],
            input="Exception")
        if_layer3.add_block(pattern_block_block_block)
        pattern_block_block.add_layer(
            "prim.equal", inputs={}, outputs=[gen_name(20)], input=None)
        if_layer2.add_block(pattern_block_block)
        if_layer2.inputs.update({
            "input-0": "interpolate-input-0",
            "input-1": "interpolate-input-3",
            "input-2": "interpolate-input-3",
            "input-3": gen_name(11),
            "input-5": gen_name(11),
        })
        pattern_block.add_layer(
            "prim.equal",
            inputs={"input": gen_name(20)},
            outputs=[gen_name(14)])
        if_layer1.add_block(pattern_block)
        if_layer1.inputs.update({
            'input-2': 'interpolate-input-0', 
            'input-4': gen_name(11), 
            'input-6': gen_name(11), 
            'input-8': 'interpolate-input-0', 
            'input-9': 'interpolate-input-3', 
            'input-10': 'interpolate-input-0'
        })
        pattern.build(inputs={
            "input-0": "interpolate-input-0",
            "input-1": "interpolate-input-1",
            "input-2": "interpolate-input-2",
            "input-3": "interpolate-input-3",
            "input-4": "interpolate-input-4"
        })
        self.patterns.append(pattern)
S
SunAhong1993 已提交
264 265
            
            
S
SunAhong1993 已提交
266 267

    def insert_new_layer(self, graph, parameters, matches):
S
SunAhong1993 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        new_layer = self.gen_new_layer(parameters, matches)
        global_layers = graph.get_global_layers()
        new_matches = dict()
        is_match = False
        for layer_id, layer in global_layers.items():
            if layer_id == list(matches.keys())[0] and not is_match:
                new_matches[layer_id] = layer
                is_match = True
            if is_match:
                new_matches[layer_id] = layer
                if layer_id == list(matches.keys())[-1]:
                    break
        new_layer_id = new_layer.layer_id
        graph.layers[new_layer_id] = new_layer
        new_matches.pop(new_layer_id)
        matches.clear()
        for layer_id, layer in new_matches.items():
            matches[layer_id] = layer
        
S
SunAhong1993 已提交
287 288 289 290 291 292

    def gen_new_layer(self, parameters, matches):
        layers = list()
        layers_id = list(matches.keys())
        layer = matches[layers_id[6]]
        size = layer.inputs["input1"]
S
SunAhong1993 已提交
293 294 295 296 297 298 299 300
        layer = matches[layers_id[19]]
        new_layer = copy.deepcopy(layer)
        layer = matches[layers_id[9]]
        new_layer.outputs[0] = layer.outputs[0]
        new_layer.layer_id = layers_id[7]
        new_layer.inputs.pop("scale_factor")
        new_layer.inputs["size"] = size
        return new_layer