opset.py 12.5 KB
Newer Older
C
Channingss 已提交
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
Channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import sys
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb
from x2paddle.op_mapper.paddle2onnx.opset10.opset import OpSet10


class OpSet11(OpSet10):
    def __init__(self):
        super(OpSet11, self).__init__()

    def relu6(self, op, block):
C
Channingss 已提交
32
        print('relu6')
C
Channingss 已提交
33 34 35 36 37 38 39 40 41 42 43 44
        min_name = self.get_name(op.type, 'min')
        max_name = self.get_name(op.type, 'max')
        min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
                                           0)
        max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
                                           op.attr('threshold'))
        node = helper.make_node(
            'Clip',
            inputs=[op.input('X')[0], min_name, max_name],
            outputs=op.output('Out'), )
        return [min_node, max_node, node]

C
Channingss 已提交
45
    def pad2d(self, op, block):
C
Channingss 已提交
46
        print('pad2d')
C
Channingss 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
        x_shape = block.var(op.input('X')[0]).shape
        paddings = op.attr('paddings')
        onnx_pads = []
        #TODO support pads is Variable
        if op.attr('data_format') == 'NCHW':
            pads = [
                0, 0, paddings[0], paddings[2], 0, 0, paddings[1], paddings[3]
            ]
        else:
            pads = [
                0, paddings[0], paddings[2], 0, 0, paddings[1], paddings[3], 0
            ]
        pads_name = self.get_name(op.type, 'pads')
        pads_node = self.make_constant_node(pads_name,
                                            onnx_pb.TensorProto.INT64, pads)
        constant_value_name = self.get_name(op.type, 'constant_value')
        constant_value_node = self.make_constant_node(constant_value_name,
                                                      onnx_pb.TensorProto.FLOAT,
                                                      op.attr('pad_value'))
C
Channingss 已提交
66 67 68 69 70 71
        node = helper.make_node(
            'Pad',
            inputs=op.input('X') + [pads_name, constant_value_name],
            outputs=op.output('Out'),
            mode=op.attr('mode'))
        return [pads_node, constant_value_node, node]
C
Channingss 已提交
72

C
Channingss 已提交
73
    def clip(self, op, block):
C
Channingss 已提交
74
        print('clip')
C
Channingss 已提交
75 76 77 78 79 80
        min_name = self.get_name(op.type, 'min')
        max_name = self.get_name(op.type, 'max')
        min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
                                           op.attr('min'))
        max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
                                           op.attr('max'))
C
Channingss 已提交
81
        node = helper.make_node(
C
Channingss 已提交
82 83 84 85
            'Clip',
            inputs=[op.input('X')[0], min_name, max_name],
            outputs=op.output('Out'))
        return [min_node, max_node, node]
C
Channingss 已提交
86

C
Channingss 已提交
87
    def bilinear_interp(self, op, block):
C
Channingss 已提交
88
        print('bilinear')
C
Channingss 已提交
89 90 91 92 93 94 95 96 97 98 99
        input_names = op.input_names
        coordinate_transformation_mode = ''
        align_corners = op.attr('align_corners')
        align_mode = op.attr('align_mode')
        if align_corners:
            coordinate_transformation_mode = 'align_corners'
        elif align_mode == 1:
            coordinate_transformation_mode = 'asymmetric'
        else:
            coordinate_transformation_mode = 'half_pixel'

C
Channingss 已提交
100 101 102
        roi_name = self.get_name(op.type, 'roi')
        roi_node = self.make_constant_node(roi_name, onnx_pb.TensorProto.FLOAT,
                                           [1, 1, 1, 1, 1, 1, 1, 1])
C
Channingss 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or (
                'SizeTensor' in input_names and
                len(op.input('SizeTensor')) > 0):
            node_list = list()
            empty_name = self.get_name(op.type, 'empty')
            empty_tensor = helper.make_tensor(
                empty_name,
                onnx_pb.TensorProto.FLOAT, (0, ),
                np.array([]).astype('float32'),
                raw=False)
            empty_node = helper.make_node(
                'Constant', [], outputs=[empty_name], value=empty_tensor)
            shape_name0 = self.get_name(op.type, 'shape')
            shape_node0 = helper.make_node(
                'Shape', inputs=op.input('X'), outputs=[shape_name0])
            starts_name = self.get_name(op.type, 'slice.starts')
            starts_node = self.make_constant_node(
                starts_name, onnx_pb.TensorProto.INT64, [0])
            ends_name = self.get_name(op.type, 'slice.ends')
            ends_node = self.make_constant_node(ends_name,
                                                onnx_pb.TensorProto.INT64, [2])
            shape_name1 = self.get_name(op.type, 'shape')
            shape_node1 = helper.make_node(
                'Slice',
                inputs=[shape_name0, starts_name, ends_name],
                outputs=[shape_name1])
            node_list.extend([
                roi_node, empty_node, shape_node0, starts_node, ends_node,
                shape_node1
            ])
            if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
                cast_shape_name = self.get_name(op.type, "shape.cast")
                cast_shape_node = helper.make_node(
                    'Cast',
                    inputs=op.input('OutSize'),
                    outputs=[cast_shape_name],
                    to=onnx_pb.TensorProto.INT64)
                node_list.append(cast_shape_node)
            else:
                concat_shape_name = self.get_name(op.type, "shape.concat")
                concat_shape_node = helper.make_node(
                    "Concat",
                    inputs=op.input('SizeTensor'),
                    outputs=[concat_shape_name],
                    axis=0)
                cast_shape_name = self.get_name(op.type, "shape.cast")
                cast_shape_node = helper.make_node(
                    'Cast',
                    inputs=[concat_shape_name],
                    outputs=[cast_shape_name],
                    to=onnx_pb.TensorProto.INT64)
                node_list.extend([concat_shape_node, cast_shape_node])
            shape_name3 = self.get_name(op.type, "shape.concat")
            shape_node3 = helper.make_node(
                'Concat',
                inputs=[shape_name1, cast_shape_name],
                outputs=[shape_name3],
                axis=0)
            result_node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0], roi_name, empty_name, shape_name3],
                outputs=op.output('Out'),
                mode='linear',
                coordinate_transformation_mode=coordinate_transformation_mode)
            node_list.extend([shape_node3, result_node])
            return node_list
        elif 'Scale' in input_names and len(op.input('Scale')) > 0:
            node = helper.make_node(
                'Resize',
C
Channingss 已提交
172
                inputs=[op.input('X')[0], roi_name, op.input('Scale')[0]],
C
Channingss 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
                outputs=op.output('Out'),
                mode='linear',
                coordinate_transformation_mode=coordinate_transformation_mode)
        else:
            out_shape = [op.attr('out_h'), op.attr('out_w')]
            scale = op.attr('scale')
            if out_shape.count(-1) > 0:
                scale_name = self.get_name(op.type, 'scale')
                scale_node = self.make_constant_node(scale_name,
                                                     onnx_pb.TensorProto.FLOAT,
                                                     [1, 1, scale, scale])
                node = helper.make_node(
                    'Resize',
                    inputs=[op.input('X')[0], roi_name, scale_name],
                    outputs=op.output('Out'),
                    mode='nearest',
                    coordinate_transformation_mode=coordinate_transformation_mode
                )
                return [scale_node, roi_node, node]
            else:
                raise Exception("Unexpected situation happend")
C
Channingss 已提交
194
        return [roi_node, node]
C
Channingss 已提交
195 196 197 198 199 200 201 202

    def nearest_interp(self, op, block):
        input_names = op.input_names
        coordinate_transformation_mode = ''
        align_corners = op.attr('align_corners')
        if align_corners:
            coordinate_transformation_mode = 'align_corners'
        else:
C
Channingss 已提交
203
            coordinate_transformation_mode = 'half_pixel'
C
Channingss 已提交
204 205 206
        roi_name = self.get_name(op.type, 'roi')
        roi_node = self.make_constant_node(roi_name, onnx_pb.TensorProto.FLOAT,
                                           [1, 1, 1, 1, 1, 1, 1, 1])
C
Channingss 已提交
207
        if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
C
Channingss 已提交
208
            print('0000')
C
Channingss 已提交
209 210
            node = helper.make_node(
                'Resize',
C
Channingss 已提交
211
                inputs=[op.input('X')[0], roi_name, op.input('OutSize')[0]],
C
Channingss 已提交
212 213 214 215
                outputs=op.output('Out'),
                mode='nearest',
                coordinate_transformation_mode=coordinate_transformation_mode)
        elif 'Scale' in input_names and len(op.input('Scale')) > 0:
C
Channingss 已提交
216
            print('1111')
C
Channingss 已提交
217 218
            node = helper.make_node(
                'Resize',
C
Channingss 已提交
219
                inputs=[op.input('X')[0], roi_name, op.input('Scale')[0]],
C
Channingss 已提交
220 221 222 223
                outputs=op.output('Out'),
                mode='nearest',
                coordinate_transformation_mode=coordinate_transformation_mode)
        else:
C
Channingss 已提交
224
            print('2222')
C
Channingss 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            out_shape = [op.attr('out_h'), op.attr('out_w')]
            scale = op.attr('scale')
            if out_shape.count(-1) > 0:
                scale_name = self.get_name(op.type, 'scale')
                scale_node = self.make_constant_node(scale_name,
                                                     onnx_pb.TensorProto.FLOAT,
                                                     [1, 1, scale, scale])
                node = helper.make_node(
                    'Resize',
                    inputs=[op.input('X')[0], roi_name, scale_name],
                    outputs=op.output('Out'),
                    mode='nearest',
                    coordinate_transformation_mode=coordinate_transformation_mode
                )
                return [scale_node, roi_node, node]
            else:
                raise Exception("Unexpected situation happend")
C
Channingss 已提交
242
        return [roi_node, node]
C
Channingss 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    def hard_swish(self, op, block):
        min_name = self.get_name(op.type, 'min')
        max_name = self.get_name(op.type, 'max')
        scale_name = self.get_name(op.type, 'scale')
        offset_name = self.get_name(op.type, 'offset')
        min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
                                           0)
        max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
                                           op.attr('threshold'))
        scale_node = self.make_constant_node(scale_name,
                                             onnx_pb.TensorProto.FLOAT,
                                             op.attr('scale'))
        offset_node = self.make_constant_node(offset_name,
                                              onnx_pb.TensorProto.FLOAT,
                                              op.attr('offset'))

        name0 = self.get_name(op.type, 'add')
        node0 = helper.make_node(
            'Add', inputs=[op.input('X')[0], offset_name], outputs=[name0])
        name1 = self.get_name(op.type, 'relu')
        node1 = helper.make_node(
            'Clip',
            inputs=[name0, min_name, max_name],
            outputs=[name1], )
        name2 = self.get_name(op.type, 'mul')
        node2 = helper.make_node(
            'Mul', inputs=[op.input('X')[0], name1], outputs=[name2])
        node3 = helper.make_node(
            'Div', inputs=[name2, scale_name], outputs=op.output('Out'))
        return [
            min_node, max_node, scale_node, offset_node, node0, node1, node2,
            node3
        ]

    def yolo_box(self, op, block):
        from .paddle_custom_layer.yolo_box import yolo_box
        return yolo_box(op, block)

    def multiclass_nms(self, op, block):
        from .paddle_custom_layer.multiclass_nms import multiclass_nms
        return multiclass_nms(op, block)