tf_op_mapper_nhwc.py 38.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
jiangjiajun 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
16 17 18 19 20 21 22 23 24 25
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
import inspect
import numpy
import sys

# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
26 27
    if pad_size < 0:
        pad_size = 0
28 29 30 31
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
def process_pack_shape(graph, param, shape_value):
    pack_inputs = [graph.get_node(name, copy=True) for name in param.layer.input]
    all_const_value = 0
    for i in range(len(pack_inputs)):
        if pack_inputs[i].layer_type == "Const":
            pack_inputs[i] = pack_inputs[i].value
            all_const_value += 1
        elif shape_value[i] > 0:
            pack_inputs[i] = shape_value[i]
            all_const_value += 1
        else:
            if hasattr(pack_inputs[i], "index"):
                index = pack_inputs[i].index
                pack_inputs[i] = pack_inputs[i].layer_name + "[{}]".format(index)
            else:
                pack_inputs[i] = pack_inputs[i].layer_name
        
    string_params = "["
    for i in range(len(pack_inputs)):
        string_params += "{}, ".format(pack_inputs[i])
    string_params = string_params.strip(", ") + "]"
    return string_params
54 55 56 57 58 59 60 61 62 63 64

class TFOpMapperNHWC(OpMapper):
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Shape': ['shape'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
        'Rsqrt': ['rsqrt'],
        'swish_f32': ['swish'],
65
        'Tanh': ['tanh'],
66 67 68 69 70 71 72 73 74
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
        }]
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
J
jiangjiajun 已提交
75 76
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
77 78 79 80 81 82 83
    }

    def __init__(self, decoder):
        super(TFOpMapperNHWC, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
        self.weights = dict()
84
        self.batch_node = None
85 86 87 88 89 90 91 92 93 94 95 96
        self.omit_nodes = list()
        self.used_custom_layers = dict()

        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(name).layer_type != "Placeholder":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]

        unsupported_ops = set()
97 98
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
        for i, node_name in enumerate(self.graph.topo_sort):
M
mamingjie-China 已提交
99
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.directly_map(node)
            elif op in self.elementwise_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.elementwise_map(node)
            elif hasattr(self, op):
                if len(unsupported_ops) > 0:
                    continue
                func = getattr(self, op)
                func(node)
            else:
                unsupported_ops.add(op)
                continue
        if len(unsupported_ops) > 0:
            print("========= {} OPs are not supported yet ===========".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print("========== {} ============".format(op))
            sys.exit(-1)
M
mamingjie-China 已提交
124
        sys.stderr.write("\nDone!\n")
125

J
jiangjiajun 已提交
126 127 128 129 130 131 132 133 134
    def add_omit_nodes(self, in_node_name, out_node_name):
        in_node = self.graph.get_node(in_node_name)
        out_node = self.graph.get_node(out_node_name)
        index = in_node.outputs.index(out_node_name)
        del in_node.outputs[index]
        index = out_node.inputs.index(in_node_name)
        del out_node.inputs[index]
        self.omit_nodes.append(in_node.layer_name)

135 136 137 138 139 140 141 142 143 144
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_node(node.layer.input[0], copy=True)
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
M
modify  
mamingjie-China 已提交
145

J
jiangjiajun 已提交
146 147 148 149
        node.fluid_code.add_layer(op_info[0],
                                inputs=input,
                                output=node,
                                param_attr=attr)
150 151 152 153 154 155 156 157

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
158 159 160 161
        if len(x_shape) == 0:
            x_shape = [1]
        if len(y_shape) == 0:
            y_shape = [1]
162 163 164 165 166 167 168 169 170 171 172 173
        # incomplement broadcasting support for paddle
        x_input = x
        y_input = y
        if len(x_shape) < len(y_shape):
            unrevertable_ops = [
                "elementwise_sub", "elementwise_div", "elementwise_floordiv",
                "elementwise_mod", "elementwise_pow"
            ]
            if op_type not in unrevertable_ops:
                x_input = y
                y_input = x
                x_shape = y.out_shapes[0]
M
modify  
mamingjie-China 已提交
174 175
                if len(x_shape) == 0:
                    x_shape = [1]
176
                y_shape = x.out_shapes[0]
M
modify  
mamingjie-China 已提交
177 178
                if len(y_shape) == 0:
                    y_shape = [1]
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
            else:
                raise Exception("Unexpected situation happend")

        if len(x_shape) == 4 and len(y_shape) == 1:
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type, inputs=inputs, output=node)
            return

        is_sub_seq = True
        for i in range(len(y_shape)):
            index = -1 * i - 1
            if y_shape[index] != x_shape[index]:
                is_sub_seq = False
        if not is_sub_seq:
            x_expand_times = [1] * len(x_shape)
            y_expand_times = [1] * len(y_shape)
            x_need_expand = False
            y_need_expand = False
            for i in range(len(y_shape)):
                index = -1 * i - 1
                if y_shape[index] != x_shape[index]:
                    if y_shape[index] == 1:
                        y_expand_times[index] = x_shape[index]
                        y_need_expand = True
                    elif x_shape[index] == 1:
                        x_expand_times[index] = y_shape[index]
                        x_need_expand = True
                    else:
                        raise Exception("Unexpected situation happend")
            if x_need_expand:
                attr = {"expand_times": x_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=x_input,
                                          output="x_tmp",
                                          param_attr=attr)
                x_input = "x_tmp"
            if y_need_expand:
                attr = {"expand_times": y_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=y_input,
                                          output="y_tmp",
                                          param_attr=attr)
                y_input = "y_tmp"
J
jiangjiajun 已提交
222 223 224 225 226
        inputs = {"x": x_input, "y": y_input}
        node.fluid_code.add_layer(op_type,
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
227 228 229 230 231 232

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
J
jiangjiajun 已提交
233 234
        if shape[0] < 0:
            self.batch_node = node
235 236 237 238 239 240
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'append_batch_size': False
        }
J
jiangjiajun 已提交
241

242 243 244 245 246 247 248 249 250 251
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
J
jiangjiajun 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

        self.weights[node.layer_name] = node.value

        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
        del self.weights[perm.layer_name.replace('/', '_')]
        perm.fluid_code.clear()
        perm = perm.value.tolist()

        attr = {'perm': perm}
        node.fluid_code.add_layer("transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        attr = {
J
jiangjiajun 已提交
295
            "pool_size": k_size[1:3],
296
            "pool_type": string("max"),
J
jiangjiajun 已提交
297 298 299
            "pool_stride": strides[1:3],
            "pool_padding": string(pad_mode),
            "data_format": string("NHWC")
300
        }
J
jiangjiajun 已提交
301
        node.fluid_code.add_layer("pool2d", inputs=input, output=node, param_attr=attr)
302 303 304 305 306

    def Conv2D(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2D should be Const"
J
jiangjiajun 已提交
307
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
308 309

        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
310
        if in_shape[3] < 0:
311 312
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
313
        if k_size.count(-1) > 0:
314 315 316 317 318 319 320 321 322 323 324 325 326 327
            k_size = self.decoder.infer_tensor(kernel).shape

        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        pad_mode = node.get_attr("padding").decode()

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
J
jiangjiajun 已提交
328 329 330 331
            "stride": strides[1:3],
            "dilation": dilations[1:3],
            "padding": string(pad_mode),
            "data_format": string("NHWC")
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
        }
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def BiasAdd(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        bias = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": input, "y": bias}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def FusedBatchNorm(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        gamma = self.graph.get_node(node.layer.input[1], copy=True)
        beta = self.graph.get_node(node.layer.input[2], copy=True)
        moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
        moving_var = self.graph.get_node(node.layer.input[4], copy=True)

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
358 359 360 361
        self.add_omit_nodes(gamma.layer_name, node.layer_name)
        self.add_omit_nodes(beta.layer_name, node.layer_name)
        self.add_omit_nodes(moving_mean.layer_name, node.layer_name)
        self.add_omit_nodes(moving_var.layer_name, node.layer_name)
362 363 364 365 366 367 368

        attr = {
            "epsilon": node.get_attr("epsilon"),
            "param_attr": string(gamma.layer_name),
            "bias_attr": string(beta.layer_name),
            "moving_mean_name": string(moving_mean.layer_name),
            "moving_variance_name": string(moving_var.layer_name),
J
jiangjiajun 已提交
369 370
            "is_test": True,
            "data_layout": string("NHWC")
371 372 373 374 375 376 377 378 379 380 381
        }

        node.fluid_code.add_layer("batch_norm",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
382
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
383 384

        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
385
        if in_shape[3] < 0:
386 387
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
388
        if k_size.count(-1) > 0:
389 390 391 392 393 394 395 396 397 398 399 400 401 402
            k_size = self.decoder.infer_tensor(kernel).shape

        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (2, 3, 0, 1))

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
J
jiangjiajun 已提交
403
            "num_filters": in_shape[3],
404
            "filter_size": k_size[0:2],
J
jiangjiajun 已提交
405 406 407
            "stride": strides[1:3],
            "dilation": dilations[1:3],
            "groups": k_size[3] * in_shape[3],
408
            "use_cudnn": False,
J
jiangjiajun 已提交
409 410
            "padding": string(pad_mode),
            "data_format": string("NHWC")
411 412 413 414 415 416 417 418 419
        }
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        param = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
420
        attr = None
421 422
        if param.layer_type == "Const":
            attr = {"shape": param.value.tolist()}
J
jiangjiajun 已提交
423
            inputs = {"x": input}
J
jiangjiajun 已提交
424
            self.add_omit_nodes(param.layer_name, node.layer_name)
425
        else:
J
jiangjiajun 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
            inputs = {"x": input, "shape": param}
            shape_value = self.decoder.infer_shape_tensor(param)
            if param.layer_type == "Pack":
                pack_inputs = [self.graph.get_node(name, copy=True) for name in param.layer.input]
                all_const_value = 0
                for i in range(len(pack_inputs)):
                    if pack_inputs[i].layer_type == "Const":
                        pack_inputs[i] = pack_inputs[i].value
                        all_const_value += 1
                    elif shape_value[i] > 0:
                        pack_inputs[i] = shape_value[i]
                        all_const_value += 1
                    else:
                        if hasattr(pack_inputs[i], "index"):
                            index = pack_inputs[i].index
                            pack_inputs[i] = pack_inputs[i].layer_name + "[{}]".format(index)
                        else:
                            pack_inputs[i] = pack_inputs[i].layer_name

                ### special optimize for paddle-lite
                in_size = 1
                in_shape = input.out_shapes[0]
                for i in range(len(in_shape)):
                    in_size *= in_shape[i]
                if all_const_value == len(pack_inputs) and in_size > 0:
                    if pack_inputs[0] > 0 and pack_inputs.count(-1) == 1:
                        for i in range(len(pack_inputs)):
                            in_size /= pack_inputs[i]
                        index = pack_inputs.index(-1)
                        pack_inputs[index] = in_size * -1
                        pack_inputs[0] = -1
                ###################################

                string_params = "["
                for i in range(len(pack_inputs)):
                    string_params += "{}, ".format(pack_inputs[i])
                string_params = string_params.strip(", ") + "]"
                inputs["shape"] = string_params
J
jiangjiajun 已提交
464

465
        node.fluid_code.add_layer("reshape",
J
jiangjiajun 已提交
466
                                  inputs=inputs,
467 468 469 470 471 472 473 474 475 476 477
                                  output=node,
                                  param_attr=attr)

    def AvgPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("padding").decode()

        attr = {
J
jiangjiajun 已提交
478
            "pool_size": k_size[1:3],
479
            "pool_type": string("avg"),
J
jiangjiajun 已提交
480 481 482
            "pool_stride": strides[1:3],
            "pool_padding": string(pad_mode),
            "data_format": string("NHWC")
483 484 485 486 487 488 489 490 491 492 493 494
        }
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def SplitV(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        num_sections = self.graph.get_node(node.layer.input[1], copy=True)
        dim = self.graph.get_node(node.layer.input[2], copy=True)
        assert num_sections.layer_type == "Const"
        assert dim.layer_type == "Const"
J
jiangjiajun 已提交
495 496
        self.add_omit_nodes(num_sections.layer_name, node.layer_name)
        self.add_omit_nodes(dim.layer_name, node.layer_name)
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        dim = dim.value
        attr = {
            "num_or_sections": num_sections.value.tolist(),
            "dim": dim.value
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ConcatV2(self, node):
        inputs = [
            self.graph.get_node(name, copy=True)
            for name in node.layer.input[:-1]
        ]
        axis = self.graph.get_node(node.layer.input[-1], copy=True)
        assert axis.layer_type == "Const"
J
jiangjiajun 已提交
514
        self.add_omit_nodes(axis.layer_name, node.layer_name)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        axis = axis.value
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])

        attr = {"axis": axis}
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
J
jiangjiajun 已提交
530
            self.add_omit_nodes(expand_times.layer_name, node.layer_name)
531
        attr = {"expand_times": expand_times}
J
jiangjiajun 已提交
532
        node.fluid_code.add_layer("expand", inputs=input, output=node, param_attr=attr)
533 534 535 536 537

    def Pack(self, node):
        inputs = [
            self.graph.get_node(name, copy=True) for name in node.layer.input
        ]
J
jiangjiajun 已提交
538 539 540 541 542 543
        if len(inputs) == 1 and len(inputs[0].out_shapes[0]) == 0:
            input_name = inputs[0].layer_name
            if hasattr(inputs[0], "index"):
                input_name += "[{}]".format(inputs[0].index)
            node.fluid_code.add_note("{} = {}".format(node.layer_name, input_name))
            return
544 545 546 547 548 549
        axis = node.get_attr("axis")
        attr = {"axis": axis}
        node.fluid_code.add_layer("stack",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
550 551 552 553
        input_shape_sample = inputs[0].out_shapes[0]
        if len(input_shape_sample) == 0:
            attr = {"shape": [-1]}
            node.fluid_code.add_layer("reshape", inputs=node, output=node, param_attr=attr)
554 555 556 557 558

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
        assert paddings.layer_type == "Const", "Padding should be Const"
J
jiangjiajun 已提交
559
        self.add_omit_nodes(paddings.layer_name, node.layer_name)
560 561 562 563
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
            new_padding = None
J
jiangjiajun 已提交
564 565
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
566
            if new_padding is not None:
J
jiangjiajun 已提交
567
                attr = {"paddings": new_padding, "data_format": string("NHWC")}
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
                node.fluid_code.add_layer("pad2d",
                                          inputs=input,
                                          output=node,
                                          param_attr=attr)
                return

        attr = {"paddings": paddings}
        node.fluid_code.add_layer("pad",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
584
        all_param_const = -2
585
        if start.layer_type == "Const":
J
jiangjiajun 已提交
586
            self.add_omit_nodes(start.layer_name, node.layer_name)
587
            start = start.value
J
jiangjiajun 已提交
588
            all_param_const += 1
589
        if limit.layer_type == "Const":
J
jiangjiajun 已提交
590
            self.add_omit_nodes(limit.layer_name, node.layer_name)
591
            limit = limit.value
J
jiangjiajun 已提交
592
            all_param_const += 1
593
        if delta.layer_type == "Const":
J
jiangjiajun 已提交
594
            self.add_omit_nodes(delta.layer_name, node.layer_name)
595
            delta = delta.value
J
jiangjiajun 已提交
596
            all_param_const += 1
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
        dtype = node.dtype
        inputs = {
            "start": start,
            "end": limit,
            "step": delta,
            "dtype": string(dtype)
        }
        attr = {"dtype": string(node.dtype)}
        node.fluid_code.add_layer("range",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

        attr = {"dim": dims, "keep_dim": keep_dims}
        node.fluid_code.add_layer("reduce_mean",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        inputs = {"x": x, "y": y}
        # fix paddle shape infer problem
        # should be removed after paddle 1.6
J
jiangjiajun 已提交
631 632 633 634 635 636 637 638 639 640 641 642
        x_last_dim = x.out_shapes[0][-1]
        y_last_dim = y.out_shapes[0][0]
        certain_dim = x_last_dim if x_last_dim > y_last_dim else y_last_dim
        shape = x.out_shapes[0]
        shape[-1] = certain_dim
        attr = {"shape": shape}
        node.fluid_code.add_layer("reshape", inputs=x, output=x, param_attr=attr)
        shape = y.out_shapes[0]
        shape[0] = certain_dim
        attr = {"shape": shape}
        node.fluid_code.add_layer("reshape", inputs=y, output=y, param_attr=attr)

643 644 645 646 647 648 649 650 651 652
        attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = self.graph.get_node(node.layer.input[1], copy=True)
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
J
jiangjiajun 已提交
653
        self.add_omit_nodes(axis.layer_name, node.layer_name)
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
        axis = axis.value
        attr = {"axis": axis}
        node.fluid_code.add_layer("argmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        end = self.graph.get_node(node.layer.input[2], copy=True)
        strides = self.graph.get_node(node.layer.input[3], copy=True)
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
J
jiangjiajun 已提交
669 670 671
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(end.layer_name, node.layer_name)
        self.add_omit_nodes(strides.layer_name, node.layer_name)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        begin = begin.value.tolist()
        end = end.value.tolist()

        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

        attr = {
            "axes": [i for i in range(len(new_begin))],
            "starts": new_begin,
            "ends": new_end
        }
        node.fluid_code.add_layer("slice",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
        if len(new_axes) > 0:
            attr = {"axes": new_axes}
            node.fluid_code.add_layer("unsqueeze",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
                attr = {"axes": shrink_axes}
                node.fluid_code.add_layer("squeeze",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)

    def Slice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        size = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
749 750
        attr = dict()
        inputs = {"x": input}
751
        if begin.layer_type == "Const":
J
jiangjiajun 已提交
752
            self.add_omit_nodes(begin.layer_name, node.layer_name)
753
            begin = begin.value.tolist()
J
jiangjiajun 已提交
754
            attr["offsets"] = begin
755
        else:
J
jiangjiajun 已提交
756 757 758
            inputs["offsets"] = begin
        if size.layer_type == "Const":
            self.add_omit_nodes(size.layer_name, node.layer_name)
759
            size = size.value.tolist()
J
jiangjiajun 已提交
760
            attr["shape"] = size
761
        else:
J
jiangjiajun 已提交
762
            inputs["shape"] = size
763

J
jiangjiajun 已提交
764 765 766 767 768 769
        if isinstance(begin, TFGraphNode) and begin.layer_type == "Pack":
            begin = process_pack_shape(self.graph, begin, self.decoder.infer_shape_tensor(begin))
            inputs["offsets"] = begin
        if isinstance(size, TFGraphNode) and size.layer_type == "Pack":
            size = process_pack_shape(self.graph, size, self.decoder.infer_shape_tensor(size))
            inputs["shape"] = size
770

J
jiangjiajun 已提交
771 772 773
        
        node.fluid_code.add_layer("crop_tensor",
                                  inputs=inputs,
774 775 776 777
                                  output=node,
                                  param_attr=attr)

    def Conv2DBackpropInput(self, node):
778
        out_shape = self.graph.get_node(node.layer.input[0], copy=True)
779
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
780 781
        input = self.graph.get_node(node.layer.input[2], copy=True)

782
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
783

J
jiangjiajun 已提交
784
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
785
        self.add_omit_nodes(out_shape.layer_name, node.layer_name)
786

787 788 789
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
J
jiangjiajun 已提交
790
            out_shape = self.decoder.infer_shape_tensor(out_shape, node.out_shapes[0])
791

792
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
793
        if in_shape[3] < 0:
794 795
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
796
        if k_size.count(-1) > 0:
797 798
            k_size = self.decoder.infer_tensor(kernel).shape

799
        pad_mode = node.get_attr("padding").decode()
800 801 802 803
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
804

805 806
        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
807

808 809 810
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
M
mamingjie-China 已提交
811
            "num_filters": k_size[2],
812
            "filter_size": k_size[0:2],
J
jiangjiajun 已提交
813 814
            "stride": strides[1:3],
            "dilation": dilations[1:3],
815
            "output_size": out_shape[1:3],
J
jiangjiajun 已提交
816 817
            "padding": string(pad_mode),
            "data_format": string("NHWC")
818 819 820 821 822
        }
        node.fluid_code.add_layer("conv2d_transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        attr = {"dim": dim, "keep_dim": keep_dims}
        node.fluid_code.add_layer("reduce_max",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        attr = {"dim": dim, "keep_dim": keep_dims}
        node.fluid_code.add_layer("reduce_sum",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        dtype = node.dtype_map[node.get_attr('DstT')]
        attr = {"dtype": string(dtype)}
        node.fluid_code.add_layer("cast",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0], copy=True)
        input = self.graph.get_node(node.layer.input[1], copy=True)
        assert dim.layer_type == "Const"
J
jiangjiajun 已提交
863
        self.add_omit_nodes(dim.layer_name, node.layer_name)
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
        num_split = node.get_attr('num_split')
        dim = dim.value

        attr = {"num_or_sections": num_split, "dim": dim}
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        attr = {"axes": squeeze_dims}
        node.fluid_code.add_layer("squeeze",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr("axis")
        attr = {"axis": axis}
        node.fluid_code.add_layer("softmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
        if resize_shape.layer_type == "Const":
J
jiangjiajun 已提交
895
            self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
896 897
            resize_shape = resize_shape.value.tolist()
        align_corners = node.get_attr("align_corners")
J
jiangjiajun 已提交
898
        attr = {"align_corners": align_corners, "out_shape": resize_shape, "data_format": string("NHWC")}
899
        node.fluid_code.add_layer("resize_nearest",
J
jiangjiajun 已提交
900
                                  inputs=input,
901 902 903 904 905 906 907
                                  output=node,
                                  param_attr=attr)

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
        if resize_shape.layer_type == "Const":
J
jiangjiajun 已提交
908
            self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
909 910 911 912 913
            resize_shape = resize_shape.value.tolist()
        align_corners = node.get_attr("align_corners")
        attr = {
            "align_corners": align_corners,
            "out_shape": resize_shape,
J
jiangjiajun 已提交
914 915
            "align_mode": 1,
            "data_format": string("NHWC")
916 917
        }
        node.fluid_code.add_layer("resize_bilinear",
J
jiangjiajun 已提交
918
                                  inputs=input,
919 920
                                  output=node,
                                  param_attr=attr)
921 922 923 924 925 926 927 928 929 930 931 932 933

    def GreaterEqual(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("greater_equal",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0], copy=True)
        if shape.layer_type == "Const":
J
jiangjiajun 已提交
934
            self.add_omit_nodes(shape.layer_name, node.layer_name)
935
            shape = shape.value.tolist()
J
jiangjiajun 已提交
936 937 938 939 940 941 942 943 944
        if not isinstance(shape, list):
            attr = {"dtype": string("int64")}
            node.fluid_code.add_layer("cast", inputs=shape, output=shape, param_attr=attr)
        attr = {"min": 0.0, "max": 0.9999}
        inputs = {"shape": shape}
        node.fluid_code.add_layer("uniform_random",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
945 946 947 948 949 950 951 952 953 954 955 956 957 958

    def SquaredDifference(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("elementwise_sub",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
        inputs = {"x": node, "y": node}
        node.fluid_code.add_layer("elementwise_mul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)