tf_batchnorm_fuser.py 8.7 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import numpy as np
from collections import OrderedDict
from x2paddle.optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *


class StaticTFBatchNormFuser(FuseBase):
    def __init__(self):
        super(StaticTFBatchNormFuser, self).__init__(graph_type="static")
        self.patterns = list()

    def build_pattern(self):
        """ 描述需要替换的batchnorm图结构。
        batchnorm层模式python实现代码示例:
            
        """

        def gen_name(id):
            return "x" + str(id)

        pattern = PaddleGraph(graph_type="dygraph")
        pattern.add_layer(
            "paddle.static.create_parameter",
            inputs={},
            outputs=[gen_name(0)])
        pattern.add_layer(
            "paddle.full",
            inputs={},
            outputs=[gen_name(1)],
            shape=[1])
        pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(0), "y": gen_name(1)},
            outputs=[gen_name(2)])
        pattern.add_layer(
            "paddle.rsqrt",
            inputs={"x": gen_name(2)},
            outputs=[gen_name(3)])
        pattern.add_layer(
            "paddle.static.create_parameter",
            inputs={},
            outputs=[gen_name(4)])
        pattern.add_layer(
            "paddle.multiply",
            inputs={"x": gen_name(3), "y": gen_name(4)},
            outputs=[gen_name(5)])
        pattern.add_layer(
            "paddle.static.create_parameter",
            inputs={},
            outputs=[gen_name(6)])
        pattern.add_layer(
            "paddle.multiply",
            inputs={"x": gen_name(6), "y": gen_name(5)},
            outputs=[gen_name(7)])
        pattern.add_layer(
            "paddle.static.create_parameter",
            inputs={},
            outputs=[gen_name(8)])
        pattern.add_layer(
S
SunAhong1993 已提交
76
            "paddle.subtract",
S
SunAhong1993 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
            inputs={"x": gen_name(8), "y": gen_name(7)},
            outputs=[gen_name(9)])
        pattern.add_layer(
            "paddle.multiply",
            inputs={"x": "bn-input-0", "y": gen_name(5)},
            outputs=[gen_name(10)])
        pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(10), "y": gen_name(9)},
            outputs=[gen_name(11)])
        pattern.build(inputs={"input-0": "bn-input-0", })
        self.patterns.append(pattern)
        
        pattern = PaddleGraph(graph_type="dygraph")
        pattern.add_layer(
            "paddle.static.create_parameter",
            inputs={},
            outputs=[gen_name(0)])
        pattern.add_layer(
            "paddle.full",
            inputs={},
            outputs=[gen_name(1)],
            shape=[1])
        pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(0), "y": gen_name(1)},
            outputs=[gen_name(2)])
        pattern.add_layer(
            "paddle.rsqrt",
            inputs={"x": gen_name(2)},
            outputs=[gen_name(3)])
        pattern.add_layer(
            "paddle.static.create_parameter",
            inputs={},
            outputs=[gen_name(4)])
        pattern.add_layer(
            "paddle.multiply",
            inputs={"x": gen_name(3), "y": gen_name(4)},
            outputs=[gen_name(5)])
        pattern.add_layer(
            "paddle.multiply",
            inputs={"x": "bn-input-0", "y": gen_name(5)},
            outputs=[gen_name(10)])
        pattern.add_layer(
            "paddle.static.create_parameter",
            inputs={},
            outputs=[gen_name(6)])
        pattern.add_layer(
            "paddle.multiply",
            inputs={"x": gen_name(6), "y": gen_name(5)},
            outputs=[gen_name(7)])
        pattern.add_layer(
            "paddle.static.create_parameter",
            inputs={},
            outputs=[gen_name(8)])
        pattern.add_layer(
S
SunAhong1993 已提交
133
            "paddle.subtract",
S
SunAhong1993 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            inputs={"x": gen_name(8), "y": gen_name(7)},
            outputs=[gen_name(9)])
        pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(10), "y": gen_name(9)},
            outputs=[gen_name(11)])
        pattern.build(inputs={"input-0": "bn-input-0", })
        self.patterns.append(pattern)

    def insert_new_layer(self, graph, parameters, matches):
        new_layers, last_layer_id = self.gen_new_layer(matches, parameters, graph)
        matches_copy = copy.deepcopy(matches)
        for layer_id, layer in matches_copy.items():
            for i in range(7):
                if layer_id == new_layers[i].id:
                    matches.pop(new_layers[i].id)
        prefix_layers = OrderedDict()
        mid_layers = OrderedDict()
        suffix_layers = OrderedDict()
        is_need_id = False
        for layer_id, layer in graph.layers.items():
            if is_need_id:
                suffix_layers[layer_id] = layer
            else:
                if layer_id == last_layer_id:
                    for i in range(7):
                        mid_layers[new_layers[i].id] = new_layers[i]
                    is_need_id = True
                prefix_layers[layer_id] = layer
        prefix_layers.update(mid_layers)
        prefix_layers.update(suffix_layers)
        graph.layers = prefix_layers

    def gen_new_layer(self, matches, parameters, graph):
        layer_id_list = list(matches.keys())
        layer_id_list.sort(key = int)
        for layer_id, layer in matches.items():
            if layer.kernel == "paddle.full":
                full_layer = layer
                out_layer_id = graph.edges_out[layer_id][0]
                if matches[out_layer_id].kernel == "paddle.add":
                    var_layer_id = graph.edges_in[out_layer_id][0]
                    var_layer = matches[var_layer_id]
            if layer.kernel == "paddle.rsqrt":
                out_layer_id = graph.edges_out[layer_id][0]
                if matches[out_layer_id].kernel == "paddle.multiply":
                    gamma_layer_id = graph.edges_in[out_layer_id][1]
                    gamma_layer = matches[gamma_layer_id]
S
SunAhong1993 已提交
182
            if layer.kernel == "paddle.subtract":
S
SunAhong1993 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
                in_layer_id = graph.edges_in[layer_id][0]
                beta_layer = matches[in_layer_id]
                in_layer_id = graph.edges_in[layer_id][1]
                in_layer_id = graph.edges_in[in_layer_id][0]
                mean_layer = matches[in_layer_id]
                out_layer_id = graph.edges_out[layer_id][0]
                add_layer = matches[out_layer_id]
            if layer.kernel == "paddle.multiply":
                in_layer_id = graph.edges_in[layer_id][1]
                mul_layer = matches[in_layer_id]
                if mul_layer.kernel == "paddle.multiply":
                    in_layer_id = graph.edges_in[layer_id][0]
                    if in_layer_id not in matches:
                        input_name = layer.inputs["x"]
        transpose0 = PaddleLayer(
            id=layer_id_list[-1] + "_1",
            kernel="paddle.transpose",
            inputs={"x": input_name},
            outputs=["{}_transpose_for_bn".format(input_name)],
            perm=[0, 3, 1, 2])
        params = parameters[gamma_layer.outputs[0]]
        c = params.shape[0]
        bn = PaddleLayer(
            id=layer_id_list[-1] + "_2",
            kernel="paddle.nn.functional.batch_norm",
            inputs={"x": "{}_transpose_for_bn".format(input_name),
                    "running_mean": mean_layer.outputs[0],
                    "running_var": var_layer.outputs[0],
                    "weight": gamma_layer.outputs[0],
                    "bias": beta_layer.outputs[0]},
            outputs=["{}_bn".format(input_name)],
            epsilon=full_layer.attrs["fill_value"])
        transpose1 = PaddleLayer(
            id=layer_id_list[-1] + "_3",
            kernel="paddle.transpose",
            inputs={"x": "{}_bn".format(input_name)},
            outputs=add_layer.outputs,
            perm=[0, 2, 3, 1])
        mean_layer.id = layer_id_list[-1] + "_01"
        var_layer.id = layer_id_list[-1] + "_02"
        gamma_layer.id = layer_id_list[-1] + "_03"
        beta_layer.id = layer_id_list[-1] + "_04"
        return [mean_layer, var_layer, gamma_layer, beta_layer, 
                transpose0, bn, transpose1], layer_id_list[-1]