aten.py 181.7 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
16
import copy
S
SunAhong1993 已提交
17
import numpy as np
S
SunAhong1993 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
from x2paddle.core.util import *
from x2paddle.core.program import PaddleGraph

dtype_dict = {
    0: string("uint8"),
    1: string("int8"),
    2: string("int16"),
    3: string("int32"),
    4: string("int64"),
    5: string("float16"),
    6: string("float32"),
    7: string("float64"),
    11: string("bool")
}


def aten_abs(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。

    TorchScript示例:
        %n0.3 : Tensor = aten::abs(%n.3)
        参数含义:
        %n0.3 (Tensor): 绝对值后的Tensor。
        %n.3 (Tensor): 绝对值前的Tensor。
    """
S
SunAhong1993 已提交
43
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
44 45 46 47 48 49 50
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
S
SunAhong1993 已提交
51
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
52 53 54 55 56
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
57
        "paddle.abs", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
    return current_inputs, current_outputs


def aten_adaptive_avg_pool2d(mapper, graph, node):
    """ 构造average adaptive pool2d的PaddleLayer。

    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
    """
S
SunAhong1993 已提交
71 72
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
73
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
74
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
75 76 77 78 79 80
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
S
SunAhong1993 已提交
81 82
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
83 84 85 86
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
87
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
88 89 90 91 92 93
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
94 95
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
96 97
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
S
SunAhong1993 已提交
98
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
99 100 101 102 103 104
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool2d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    return current_inputs, current_outputs


def aten_addmm(mapper, graph, node):
    """ 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。

    TorchScript示例:
        %ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
        参数含义:
        %ret.2 (Tensor): addmm结果Tensor。
        %150 (Tensor): 输入Tensor input。
        %input.3 (Tensor): 输入Tensor x。
        %156 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
        %152 (int/float): 输入beta。
    """
S
SunAhong1993 已提交
121
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
122 123 124 125 126 127 128 129 130
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%150
    mapper._check_input(
S
SunAhong1993 已提交
131
        graph, inputs_node[0], inputs_name[0], current_outputs, scope_name, add_dim=True)
S
SunAhong1993 已提交
132 133
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%input.3
S
SunAhong1993 已提交
134
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
135 136
    layer_inputs["x"] = inputs_name[1]
    # 处理输入2,即%156
S
SunAhong1993 已提交
137
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
S
SunAhong1993 已提交
138 139 140 141 142 143 144 145
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入3,即%152
    if inputs_name[3] in mapper.attrs:
        layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
146
                            current_outputs, scope_name)
S
SunAhong1993 已提交
147 148 149 150 151 152 153
        layer_inputs["beta"] = inputs_name[3]
        current_inputs.append(inputs_name[3])
    # 处理输入4,即%151
    if inputs_name[4] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
    else:
        mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
154
                            current_outputs, scope_name)
S
SunAhong1993 已提交
155 156 157 158 159 160 161
        layer_inputs["alpha"] = inputs_name[4]
        current_inputs.append(inputs_name[4])

    graph.add_layer(
        "paddle.addmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
162
        scope_name=scope_name,
S
SunAhong1993 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176
        **layer_attrs)
    return current_inputs, current_outputs


def aten_add(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + y。

    TorchScript示例:
        %296 : int = aten::add(%i.12, %288)
        参数含义:
        %296 (-): 相加结果。
        %i.12 (-): 输入数值 x。
        %288 (-): 输入数值 y。
    """
S
SunAhong1993 已提交
177
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
178 179 180 181 182 183 184
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
185
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
186 187 188
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
    mapper._check_input(
S
SunAhong1993 已提交
189
        graph, inputs_node[1], inputs_name[1], current_outputs, scope_name, add_dim=True)
S
SunAhong1993 已提交
190 191 192 193
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
194
    graph.add_layer("prim.add", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208
    return current_inputs, current_outputs


def aten_add_(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。

    TorchScript示例:
        %137 : Tensor = aten::add(%136, %130, %130)
        参数含义:
        %output.5 (Tensor): add结果Tensor。
        %output.2 (Tensor): 输入Tensor x。
        %150 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
    """
S
SunAhong1993 已提交
209
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
210 211 212 213 214 215 216 217
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%output.2
S
SunAhong1993 已提交
218
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
219 220 221
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%150
    mapper._check_input(
S
SunAhong1993 已提交
222
        graph, inputs_node[1], inputs_name[1], current_outputs, scope_name, add_dim=True)
S
SunAhong1993 已提交
223 224 225 226 227 228 229 230
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%151
    if inputs_name[2] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
231
                            current_outputs, scope_name)
S
SunAhong1993 已提交
232 233 234 235
        layer_inputs["alpha"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
236
        "prim.add_", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, **layer_attrs)
S
SunAhong1993 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249
    return current_inputs, current_outputs


def aten___and__(mapper, graph, node):
    """ 构造与计算的PaddleLayer。

    TorchScript示例:
        %361 : bool = aten::__and__(%360, %358)
        参数含义:
        %361 (bool): 输出,与计算结果。
        %360 (-): 输入 x。
        %358 (-): 输入 y。
    """
S
SunAhong1993 已提交
250
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
251 252 253 254 255 256 257
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
258
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
259 260
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
S
SunAhong1993 已提交
261
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
262 263 264 265
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
266
    graph.add_layer("prim.and", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279
    return current_inputs, current_outputs


def aten_append(mapper, graph, node):
    """ 构造对list进行append的PaddleLayer。

    TorchScript示例:
        %90 : int[] = aten::append(%_output_size.1, %v.1)
        参数含义:
        %90 (list): 输出,append后的list。
        %_output_size.1 (list): 需要进行append的list。
        %v.1 (-): append的元素。
    """
S
SunAhong1993 已提交
280
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
281 282 283 284 285 286
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    layer_outputs = [inputs_name[0]]
    # 获取当前节点输出的list
    current_outputs = [inputs_name[0]]
    # 处理输入0,即_output_size.1
S
SunAhong1993 已提交
287
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
288 289
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即v.1
S
SunAhong1993 已提交
290
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
291 292 293 294
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
295
    graph.add_layer("prim.append", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
296 297 298 299 300 301 302 303 304
    return current_inputs, current_outputs


def aten_arange(mapper, graph, node):
    """ 构造以步长均匀分隔给定数值区间的PaddleLayer。

    TorchScript示例:
        有三种情况,分别处理。
    """
S
SunAhong1993 已提交
305
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    if len(inputs_name) == 5:
        # %position_ids.1 : Tensor = aten::arange(%52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%52,代表end
        if inputs_name[0] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
322
                                current_outputs, scope_name)
S
SunAhong1993 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
            layer_inputs["end"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%43,代表dtype
        if mapper.attrs[inputs_name[1]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
    elif len(inputs_name) == 6:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
338
                                current_outputs, scope_name)
S
SunAhong1993 已提交
339 340 341 342 343 344 345
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
346
                                current_outputs, scope_name)
S
SunAhong1993 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%43,代表dtype
        if mapper.attrs[inputs_name[2]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    elif len(inputs_name) == 7:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
362
                                current_outputs, scope_name)
S
SunAhong1993 已提交
363 364 365 366 367 368 369
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
370
                                current_outputs, scope_name)
S
SunAhong1993 已提交
371 372 373 374 375 376 377
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%53,代表step
        if inputs_name[2] in mapper.attrs:
            layer_attrs["step"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
378
                                current_outputs, scope_name)
S
SunAhong1993 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
            layer_inputs["step"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
        # 处理输入3,即%43,代表dtype
        if mapper.attrs[inputs_name[3]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[3]]]
    else:
        raise Exception("Unknown aten::arange signature taking " + str(
            len(inputs_name)) + " arguments.")

    graph.add_layer(
        "paddle.arange",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
394
        scope_name=scope_name,
S
SunAhong1993 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        **layer_attrs)
    return current_inputs, current_outputs


def aten_avg_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
S
SunAhong1993 已提交
414 415
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
416
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
417
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
418 419 420 421 422 423
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
424
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
425 426 427 428
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
429
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
430
    # 处理输入2,即%539
S
SunAhong1993 已提交
431
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
432
    # 处理输入3,即%540
S
SunAhong1993 已提交
433
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
434 435 436 437 438 439 440 441
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
442
        outputs=[inputs_name[6] + "_assert"],
S
SunAhong1993 已提交
443
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
S
SunAhong1993 已提交
444 445 446
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)
S
SunAhong1993 已提交
447 448

    graph.add_layer(
S
SunAhong1993 已提交
449
        kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
450
        inputs=layer_inputs,
S
SunAhong1993 已提交
451
        outputs=layer_outputs,
S
SunAhong1993 已提交
452 453
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
454

S
SunAhong1993 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    return current_inputs, current_outputs

def aten_avg_pool3d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
487
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
488
    # 处理输入2,即%539
S
SunAhong1993 已提交
489
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
490
    # 处理输入3,即%540
S
SunAhong1993 已提交
491
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

S
SunAhong1993 已提交
506
    graph.add_layer(
S
SunAhong1993 已提交
507
        kernel="paddle.nn.AvgPool3D",
S
SunAhong1993 已提交
508
        inputs=layer_inputs,
S
SunAhong1993 已提交
509
        outputs=layer_outputs,
S
SunAhong1993 已提交
510 511 512 513 514
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
fix  
SunAhong1993 已提交
515
def aten_avg_pool1d(mapper, graph, node):
S
SunAhong1993 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool1d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
545
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
546
    # 处理输入2,即%539
S
SunAhong1993 已提交
547
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
548
    # 处理输入3,即%540
S
SunAhong1993 已提交
549
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

    graph.add_layer(
S
SunAhong1993 已提交
565
        kernel="paddle.nn.AvgPool1D",
S
SunAhong1993 已提交
566
        inputs=layer_inputs,
S
SunAhong1993 已提交
567
        outputs=layer_outputs,
S
SunAhong1993 已提交
568
        scope_name=scope_name,
S
SunAhong1993 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        **layer_attrs)
    return current_inputs, current_outputs


def aten_batch_norm(mapper, graph, node):
    """ 构造BatchNorm的PaddleLayer。

    TorchScript示例:
        %input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
                                              %exponential_average_factor.23, %766, %781)
        参数含义:
        %input.81 (Tensor): 输出,批处理后的结果。
        %input.80 (Tensor): 需要进行批处理的特征层。
        %778 (Tensor): weights。
        %779 (Tensor): bias。
        %776 (Tensor): 全局均值。
        %777 (Tensor): 全局方差。
        %780 (bool): 是否训练。
        %exponential_average_factor.23 (float): 用于计算均值和方差的比例。
        %766 (float): 为了数值稳定加在分母上的值。
        %781 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
591 592
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("batchnorm", mapper.nn_name2id)
S
SunAhong1993 已提交
593
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
594
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
595 596 597 598 599 600 601
    layer_inputs = {}
    layer_attrs = {}
    layer_attrs["is_test"] = True
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
602
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
603 604 605 606 607
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%778
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
608
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
609 610 611 612 613
    layer_attrs['num_channels'] = weights.shape[0]
    # 处理输入2,即%779
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
614
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
615
    else:
S
SunAhong1993 已提交
616
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
617 618
    # 处理输入3,即%776
    mean = mapper.pytorch_params[inputs_name[3]]
S
SunAhong1993 已提交
619
    mapper.paddle_params[op_name + "._mean"] = mean
S
SunAhong1993 已提交
620 621
    # 处理输入4,即%777
    var = mapper.pytorch_params[inputs_name[4]]
S
SunAhong1993 已提交
622
    mapper.paddle_params[op_name + "._variance"] = var
S
SunAhong1993 已提交
623 624 625 626 627 628 629 630 631
    # 处理输入6,即%exponential_average_factor.23
    layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%766
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "paddle.nn.BatchNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
632
        scope_name=scope_name,
S
SunAhong1993 已提交
633 634 635 636
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
def aten_bmm(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。

    TorchScript示例:
        %x.222 : Tensor = aten::bmm(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,矩阵相乘后的结果。
        %i.12 (list): 输入1。
        %7 (int): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
    mapper._check_input(
        graph, inputs_node[1], inputs_name[1], current_outputs, scope_name, add_dim=True)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("paddle.bmm", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
668 669 670 671 672 673 674 675 676 677
def aten_cat(mapper, graph, node):
    """ 构造连接Tensor的PaddleLayer。

    TorchScript示例:
        %x.222 : Tensor = aten::cat(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,连接后的结果。
        %i.12 (list): 需要连接的Tensor组成的list。
        %7 (int): 连接的轴。
    """
S
SunAhong1993 已提交
678
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
679 680 681 682 683 684 685 686
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
687 688
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
689 690 691 692 693 694 695
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
696
                            current_outputs, scope_name)
S
SunAhong1993 已提交
697 698 699
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
700
        "paddle.concat",
S
SunAhong1993 已提交
701 702
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
703
        scope_name=scope_name,
S
SunAhong1993 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        **layer_attrs)
    return current_inputs, current_outputs


def aten_chunk(mapper, graph, node):
    """构造分割Tensor的PaddleLayer。

    TorchScript示例:
        %724 : Tensor[] = aten::chunk(%input.170, %720, %719)
        参数含义:
        %724 (Tensor): 输出,分割后的结果。
        %input.170 (Tensor): 需要进行分割的Tensor。
        %720 (int): 分割的块数。
        %719 (int): 分割的维度。
    """
S
SunAhong1993 已提交
719
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
720 721 722 723 724 725 726 727
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.170
S
SunAhong1993 已提交
728 729
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
730 731 732 733 734 735 736
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%720
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
737
                            current_outputs, scope_name)
S
SunAhong1993 已提交
738 739 740 741
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%719
    if inputs_name[2] in mapper.attrs:
S
SunAhong1993 已提交
742
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
743 744
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
745 746
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
747 748
        current_inputs.append(inputs_name[2])
    graph.add_layer(
S
SunAhong1993 已提交
749
        "paddle.split",
S
SunAhong1993 已提交
750 751
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
752
        scope_name=scope_name,
S
SunAhong1993 已提交
753 754 755 756
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
def aten_clamp(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。

    TorchScript示例:
        %56 : Tensor = aten::clamp(%input.1, %46, %48, %49)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
        %48 (float/Tensor): 最大值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%48,代表dtype
    if inputs_name[2] in mapper.attrs:
        layer_attrs["max"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["max"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
807 808 809 810 811 812 813 814 815 816
def aten___contains__(mapper, graph, node):
    """ 构造in的PaddleLayer。

    TorchScript示例:
        %51 : bool = aten::__contains__(%50, %name.1)
        参数含义:
        %51 (bool): 输出,第一个元素是否包含第二个元素。
        %50 (-): 需对比的输入1。
        %name.1 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
817
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
818 819 820 821 822 823 824
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%50
S
SunAhong1993 已提交
825
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
826 827
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%name.1
S
SunAhong1993 已提交
828
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
829 830 831 832
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
833
    graph.add_layer("prim.contain", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847
    return current_inputs, current_outputs


def aten_constant_pad_nd(mapper, graph, node):
    """ 构造填充固定值的PaddleLayer。

    TorchScript示例:
        %58 : Tensor = aten::constant_pad_nd(%input1.24, %4876, %42)
        参数含义:
        %58 (Tensor): 输出,填充后的Tensor。
        %input1.24 (Tensor): 需要填充的Tensor。
        %4876 (list): 填充大小。
        %42 (-): 填充值。
    """
S
SunAhong1993 已提交
848 849
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad", mapper.nn_name2id)
S
SunAhong1993 已提交
850
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
851
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
852 853 854 855 856 857
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input1.24
S
SunAhong1993 已提交
858
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
859 860 861 862 863 864
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4876
    layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%42
S
SunAhong1993 已提交
865
    layer_attrs["value"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
866 867

    graph.add_layer(
S
SunAhong1993 已提交
868
        "prim.shape",
S
SunAhong1993 已提交
869
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
870 871
        outputs=[inputs_name[0] + "_shape"],
        scope_name=scope_name)
S
SunAhong1993 已提交
872 873 874
    graph.add_layer(
        "prim.len",
        inputs={"input": inputs_name[0] + "_shape"},
S
SunAhong1993 已提交
875 876
        outputs=[inputs_name[0] + "_len"],
        scope_name=scope_name)
S
SunAhong1993 已提交
877 878 879 880 881 882

    def add_pad_layers(kernel, dim):
        graph.add_layer(
            "prim.ne",
            inputs={"x": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
883
            scope_name=scope_name,
S
SunAhong1993 已提交
884 885 886
            y=dim)
        graph.add_layer(
            "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
887 888
            outputs=[inputs_name[0] + "_if", output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
889
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
890
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
891 892 893 894
        block.add_layer(
            "prim.sub",
            inputs={"y": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_len0"],
S
SunAhong1993 已提交
895
            scope_name=scope_name,
S
SunAhong1993 已提交
896 897 898 899
            x=dim)
        block.add_layer(
            "prim.len2list",
            inputs={"len": inputs_name[0] + "_len0"},
S
SunAhong1993 已提交
900 901
            outputs=[inputs_name[0] + "_list"],
            scope_name=scope_name)
S
SunAhong1993 已提交
902
        block.add_layer(
S
SunAhong1993 已提交
903
            "paddle.unsqueeze",
S
SunAhong1993 已提交
904 905
            inputs={"x": inputs_name[0],
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
906 907
            outputs=[inputs_name[0] + "_var"],
            scope_name=scope_name)
S
SunAhong1993 已提交
908 909 910
        block.add_layer(
            kernel,
            inputs={"input": inputs_name[0] + "_var"},
S
SunAhong1993 已提交
911
            outputs=copy.deepcopy(layer_outputs),
S
SunAhong1993 已提交
912
            scope_name=scope_name,
S
SunAhong1993 已提交
913 914
            **layer_attrs)
        block.add_layer(
S
SunAhong1993 已提交
915
            "paddle.squeeze",
S
SunAhong1993 已提交
916 917
            inputs={"x": output_name,
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
918 919
            outputs=[output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
920
        if_layer.add_block(block)
S
SunAhong1993 已提交
921
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
922 923
        layer_inputs["input"] = inputs_name[0]
        block.add_layer(
S
SunAhong1993 已提交
924
            kernel, inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, **layer_attrs)
S
SunAhong1993 已提交
925 926 927 928 929
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[0]
        if_layer.inputs["input-1"] = inputs_name[0] + "_len"

    if len(layer_attrs["padding"]) == 2:
S
SunAhong1993 已提交
930
        add_pad_layers("paddle.nn.Pad1D", 3)
S
SunAhong1993 已提交
931
    elif len(layer_attrs["padding"]) == 4:
S
SunAhong1993 已提交
932
        add_pad_layers("paddle.nn.Pad2D", 4)
S
SunAhong1993 已提交
933
    elif len(layer_attrs["padding"]) == 6:
S
SunAhong1993 已提交
934
        add_pad_layers("paddle.nn.Pad3D", 5)
S
SunAhong1993 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
    else:
        raise Exception("The lenght of padding list must be 2, 4 or 6!")
    return current_inputs, current_outputs


def aten_contiguous(mapper, graph, node):
    """ 构造在内存中连续存储的PaddleLayer。

    TorchScript示例:
        %x.7 : Tensor = aten::contiguous(%4058, %4046)
        参数含义:
        %x.7 (Tensor): 输出,在内存中连续存储的Tensor。
        %4058 (Tensor): 原始Tensor。
        %4046 (int): 存储的形式。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
952
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
953 954 955 956 957 958 959 960
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4058
S
SunAhong1993 已提交
961
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
962 963 964 965
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
966
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
    return current_inputs, current_outputs


def aten_conv2d(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。

    TorchScript示例:
        %input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
S
SunAhong1993 已提交
982
        %30 (int): 空洞大小。
S
SunAhong1993 已提交
983 984
        %26 (int): 卷积的组数。
    """
S
SunAhong1993 已提交
985 986
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
S
SunAhong1993 已提交
987
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
988
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
989 990 991 992 993 994
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
995
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
996 997 998 999 1000
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
1001
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
1002 1003 1004 1005 1006 1007
    layer_attrs["out_channels"] = weights.shape[0]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1008
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[6]]

    graph.add_layer(
S
SunAhong1993 已提交
1024
        "paddle.nn.Conv2D",
S
SunAhong1993 已提交
1025 1026
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1027
        scope_name=scope_name,
S
SunAhong1993 已提交
1028 1029 1030 1031 1032 1033 1034 1035
        **layer_attrs)
    return current_inputs, current_outputs


def aten__convolution(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。

    TorchScript示例:
S
SunAhong1993 已提交
1036
        %input.10 : Tensor = aten::_convolution(%input.1, %18, %10, %19, %20, %21, %13, %22, %12, %13, %13, %15)
S
SunAhong1993 已提交
1037 1038 1039
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
S
SunAhong1993 已提交
1040 1041 1042 1043
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
S
SunAhong1993 已提交
1044
        %21 (list): 空洞大小。
S
SunAhong1993 已提交
1045 1046 1047
        %13 (bool): 是否进行转置卷积。
        %22 (list): 输出形状上一侧额外添加的大小。
        %12 (int): 卷积的组数。
S
SunAhong1993 已提交
1048
    """
S
SunAhong1993 已提交
1049 1050
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
S
SunAhong1993 已提交
1051
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1052
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1053 1054 1055 1056 1057 1058
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1059
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1060 1061 1062
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1063
    # 处理输入1,即%18
S
SunAhong1993 已提交
1064
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
1065 1066 1067 1068 1069 1070
    mapper.paddle_params[op_name + ".weight"] = weights #np.swapaxes(weights, 0, 1)
    if mapper.attrs[inputs_name[6]]:
        layer_attrs["out_channels"] = weights.shape[1]
    else:
        layer_attrs["out_channels"] = weights.shape[0]
    layer_attrs["kernel_size"] = weights.shape[2:]    
S
SunAhong1993 已提交
1071
    # 处理输入2,即%10
S
SunAhong1993 已提交
1072 1073 1074
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1075
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1076 1077 1078 1079
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
1080
    # 处理输入3,即%19
S
SunAhong1993 已提交
1081
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
1082
    # 处理输入4,即%20
S
SunAhong1993 已提交
1083
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1084
    # 处理输入5,即%21
S
SunAhong1993 已提交
1085
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
1086 1087 1088 1089 1090 1091
    # 处理输入6,即%13
    if mapper.attrs[inputs_name[6]]:
        # 处理输入7,即%22
        layer_attrs["output_padding"] = mapper.attrs[inputs_name[7]]
    # 处理输入8,即%12
    layer_attrs["groups"] = mapper.attrs[inputs_name[8]]
S
SunAhong1993 已提交
1092 1093 1094 1095 1096 1097
    if mapper.attrs[inputs_name[6]]:
        layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[inputs_name[
            8]]
    else:
        layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[
            8]]
S
SunAhong1993 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    if mapper.attrs[inputs_name[6]]:
        graph.add_layer(
            "paddle.nn.Conv2DTranspose",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        graph.add_layer(
            "paddle.nn.Conv2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1112 1113 1114
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
def aten_conv_transpose2d(mapper, graph, node):
    """ 构造conv_transpose2d的PaddleLayer。

    TorchScript示例:
        %input.10 : Tensor = aten::conv_transpose2d(%input.1, %18, %10, %19, %20, %21, %13, %22)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
        %21 (int/tuple): 输出形状上一侧额外添加的大小。
        %13 (int): 二维卷积层的组数。
        %22 (int/tuple): 空洞大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%18
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["out_channels"] = weights.shape[1]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%10
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[op_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%19
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%20
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%21
    layer_attrs["output_padding"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%13
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%22
    layer_attrs["dilation"] = mapper.attrs[inputs_name[7]]
    layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[inputs_name[
            6]]
    graph.add_layer(
        "paddle.nn.Conv2DTranspose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188
def aten_cos(mapper, graph, node):
    """ 构造数学计算cos的PaddleLayer。

    TorchScript示例:
        %94 : Tensor = aten::cos(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,cos之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
1189
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1190 1191 1192 1193 1194 1195 1196
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1197
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1198 1199 1200 1201
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1202
    graph.add_layer("paddle.cos", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    return current_inputs, current_outputs


def aten_cumsum(mapper, graph, node):
    """ 构造与前一个元素累加的PaddleLayer。

    TorchScript示例:
        %56 : Tensor = aten::cumsum(%mask.1, %46, %48)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %mask.1 (Tensor): 输入,需要累加的Tensor。
        %46 (int): 累加的维度。
        %48 (int/None): Tensor的类型。
    """
S
SunAhong1993 已提交
1217
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1218 1219 1220 1221 1222 1223 1224 1225
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
1226
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1227 1228 1229 1230 1231 1232 1233 1234
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
1235
                            current_outputs, scope_name)
S
SunAhong1993 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入1,即%48,代表dtype
    if mapper.attrs[inputs_name[2]] is None:
        layer_attrs["dtype"] = None
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.cumsum",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1248
        scope_name=scope_name,
S
SunAhong1993 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        **layer_attrs)
    return current_inputs, current_outputs


def aten_detach(mapper, graph, node):
    """ 构造返回一个新的Tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置的PaddleLayer。

    TorchScript示例:
        %107 : Tensor = aten::detach(%new_mem.1)
        参数含义:
        %107 (Tensor): 输出,得到的Scalar。
        %new_mem.1 (Tensor): 输入。

    【注意】由于Paddle无此操作,所以此处制转换为赋值。
    """
S
SunAhong1993 已提交
1264
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1265 1266 1267 1268 1269 1270 1271 1272
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
1273
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1274 1275 1276
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1277
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

    return current_inputs, current_outputs


def aten_dict(mapper, graph, node):
    """ 构造初始化dict的PaddleLayer。

    TorchScript示例:
        %features.1 : Dict(str, Tensor) = aten::dict()
        参数含义:
        %features.1: 输出,初始化的dict。
    """
S
SunAhong1993 已提交
1290
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1291 1292 1293 1294 1295 1296 1297
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    current_inputs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]

S
SunAhong1993 已提交
1298
    graph.add_layer("prim.dict", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    return current_inputs, current_outputs


def aten_dim(mapper, graph, node):
    """ 构造获取维度的PaddleLayer。

    TorchScript示例:
        %106 : int = aten::dim(%101)
        参数含义:
        %106 (int): 输出,Tensor的维度。
        %101 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
1311
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1312 1313 1314 1315 1316 1317
    output_name = mapper._get_outputs_name(node)[0]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1318
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1319
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1320 1321 1322 1323
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
fix  
SunAhong1993 已提交
1324
        "prim.shape", inputs=layer_inputs, outputs=[output_name], scope_name=scope_name)
S
SunAhong1993 已提交
1325
    graph.add_layer(
S
fix  
SunAhong1993 已提交
1326
        "prim.len", inputs={"input": output_name}, outputs=[output_name], scope_name=scope_name)
S
SunAhong1993 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    return current_inputs, current_outputs


def aten_div_(mapper, graph, node):
    """ 构造除法的PaddleLayer。

    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1347
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1348 1349
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1350
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
1351 1352 1353 1354
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1355
    graph.add_layer("prim.div", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    return current_inputs, current_outputs


def aten_div(mapper, graph, node):
    """ 构造除法的PaddleLayer。

    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
S
SunAhong1993 已提交
1369
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1370 1371 1372 1373 1374 1375 1376
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1377
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1378 1379
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1380
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
1381 1382 1383 1384
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1385
    graph.add_layer("prim.div", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    return current_inputs, current_outputs


def aten_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。

    TorchScript示例:
        %119 : Tensor = aten::dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1399 1400
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
S
SunAhong1993 已提交
1401
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1402
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1403 1404 1405 1406 1407
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1408
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1409 1410 1411 1412 1413
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1414
        "paddle.nn.Dropout", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, p=0.0)
S
SunAhong1993 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    return current_inputs, current_outputs


def aten_dropout_(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。

    TorchScript示例:
        %119 : Tensor = aten::dropout_(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1428 1429
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
S
SunAhong1993 已提交
1430
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1431
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1432 1433 1434 1435 1436
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1437
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1438 1439 1440 1441 1442
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1443
        "paddle.nn.Dropout", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, p=0.0)
S
SunAhong1993 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    return current_inputs, current_outputs


def aten_embedding(mapper, graph, node):
    """ 构造embedding的PaddleLayer。

    TorchScript示例:
        %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46)
        参数含义:
        %inputs_embeds.1 (Tensor): 输出,embedding后的结果。
        %57 (Tensor): weights。
        %input_ids.1 (Tensor): 需要进行embedding的特征层。
        %45 (int): padding_idx。
        %46 (bool): scale_grad_by_freq。
        %46 (bool): sparse。
    """
S
SunAhong1993 已提交
1460 1461
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("embedding", mapper.nn_name2id)
S
SunAhong1993 已提交
1462
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1463
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1464 1465 1466 1467 1468 1469 1470
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%57
    weights = mapper.pytorch_params[inputs_name[0]]
S
SunAhong1993 已提交
1471 1472 1473
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["num_embeddings"] = weights.shape[0]
    layer_attrs["embedding_dim"] = weights.shape[1]
S
SunAhong1993 已提交
1474
    # 处理输入1,即%input_ids.1
S
SunAhong1993 已提交
1475
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484
    layer_inputs["input"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%45
    if mapper.attrs[inputs_name[2]] == -1:
        layer_attrs["padding_idx"] = None
    else:
        layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]]
    # 处理输入4,即%46
S
SunAhong1993 已提交
1485
    layer_attrs["sparse"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1486 1487

    graph.add_layer(
S
SunAhong1993 已提交
1488
        "paddle.nn.Embedding",
S
SunAhong1993 已提交
1489 1490
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1491
        scope_name=scope_name,
S
SunAhong1993 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
        **layer_attrs)
    return current_inputs, current_outputs


def aten_eq(mapper, graph, node):
    """ 构造判断数值是否相等的PaddleLayer。

    TorchScript示例:
        %125 : bool = aten::eq(%124, %123)
        参数含义:
        %125 (bool): 对比后结果。
        %124 (-): 需对比的输入1。
        %123 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1506
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1507 1508 1509 1510 1511 1512 1513
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1514
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1515 1516 1517 1518
    layer_inputs["x"] = inputs_name[0]
    x_value = list(node.inputs())[0]
    x_type = x_value.type()
    # 处理输入1,即%123
S
SunAhong1993 已提交
1519
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
1520 1521 1522 1523 1524
    layer_inputs["y"] = inputs_name[1]
    y_value = list(node.inputs())[1]
    y_type = y_value.type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1525
    graph.add_layer("prim.eq", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1526 1527 1528
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
def aten_erf(mapper, graph, node):
    """ 构造逐元素计算 Erf 激活函数的PaddleLayer。

    TorchScript示例:
        %94 : Tensor = aten::erf(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,erf之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行erf的Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("paddle.erf", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563
def aten_exp(mapper, graph, node):
    """ 构造以自然数e为底指数运算的PaddleLayer。

    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,运算后的结果。
        %54 (Tensor): 需要指数运算的Tensor。
    """
S
SunAhong1993 已提交
1564
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1565 1566 1567 1568 1569 1570 1571
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1572
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1573 1574 1575 1576 1577
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1578
        "paddle.exp", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
    return current_inputs, current_outputs


def aten_expand(mapper, graph, node):
    """ 构造对某维度进行广播的PaddleLayer。

    TorchScript示例:
        %1889 : Tensor = aten::expand(%1875, %1888, %1567)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (int): 广播的维度。
        %1567 (bool): 未使用。
    """
S
SunAhong1993 已提交
1593
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1594 1595 1596
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
1597
    layer_attrs = {}
S
SunAhong1993 已提交
1598 1599 1600 1601
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1602
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1603
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
1613
    graph.add_layer(
S
SunAhong1993 已提交
1614 1615 1616
        "paddle.expand", 
        inputs=layer_inputs, 
        outputs=layer_outputs, 
S
SunAhong1993 已提交
1617
        scope_name=scope_name,
S
SunAhong1993 已提交
1618
        **layer_attrs)
S
SunAhong1993 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    return current_inputs, current_outputs


def aten_expand_as(mapper, graph, node):
    """ 构造广播的PaddleLayer。

    TorchScript示例:
        %1889 : Tensor = aten::expand_as(%1875, %1888)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (Tensor): 广播的示例。
    """
S
SunAhong1993 已提交
1632
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1633 1634 1635 1636 1637 1638 1639
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1640
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1641 1642
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
S
SunAhong1993 已提交
1643 1644
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1645 1646
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1647
    
S
SunAhong1993 已提交
1648 1649 1650
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
1651 1652
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1653 1654 1655
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
S
SunAhong1993 已提交
1656 1657
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1658 1659 1660 1661
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
1662
        scope_name=scope_name,
S
SunAhong1993 已提交
1663 1664 1665
        y=string("VarType.BOOL"))
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1666 1667
        outputs=[inputs_name[0] + "_if1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1668
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
1669
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1670 1671 1672
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
1673 1674
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1675
    block.add_layer(
S
SunAhong1993 已提交
1676
        "paddle.cast",
S
SunAhong1993 已提交
1677 1678
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
S
SunAhong1993 已提交
1679
        scope_name=scope_name,
S
SunAhong1993 已提交
1680 1681
        dtype=inputs_name[1] + "_type")
    if_layer.add_block(block)
S
SunAhong1993 已提交
1682
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1683 1684 1685 1686
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]
    graph.add_layer(
S
SunAhong1993 已提交
1687
        "paddle.expand_as", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1688 1689
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1690 1691
        outputs=[inputs_name[0] + "_if2"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1692
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
1693
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1694
    block.add_layer(
S
SunAhong1993 已提交
1695
        "paddle.cast",
S
SunAhong1993 已提交
1696
        inputs={"x": layer_outputs[0]},
S
SunAhong1993 已提交
1697 1698
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name,
S
SunAhong1993 已提交
1699 1700
        dtype=string("bool"))
    if_layer.add_block(block)
S
SunAhong1993 已提交
1701
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1702 1703
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
S
SunAhong1993 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
    # TODO(syf): check expand_as
#     # 处理输入0,即%1875
#     mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
#     layer_inputs["x"] = inputs_name[0]
#     # 处理输入1,即%1888
#     mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
#     layer_inputs["y"] = inputs_name[1]
#     # 获取当前节点输入的list
#     current_inputs = list(layer_inputs.values())
#     graph.add_layer(
#         "paddle.expand_as", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
    return current_inputs, current_outputs


def aten_eye(mapper, graph, node):
    """ 构造批次二维矩阵的PaddleLayer。

    TorchScript示例:
        %68 : Tensor = aten::eye(%49, %_50, %_51, %15, %9, %67, %7)
        参数含义:
        %68 (Tensor): 输出,构造的矩阵。
        %49 (int): 行数。
        %_50 (int): 列数,非必须。
        %_51 (Tensor): 非必须。
        %9 (int): layout。
        %67 (str): 设备。
        %7 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
1732
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1733 1734 1735 1736 1737 1738 1739 1740
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%49
S
SunAhong1993 已提交
1741
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1742 1743 1744 1745
    layer_inputs["num_rows"] = inputs_name[0]
    if len(inputs_name) > 5:
        # 处理输入1,即%_50
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
1746
                            current_outputs, scope_name)
S
SunAhong1993 已提交
1747 1748 1749 1750 1751 1752 1753
        layer_inputs["num_columns"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理倒数第4个输入,即%15
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[-4]]]

    graph.add_layer(
S
SunAhong1993 已提交
1754
        "paddle.eye",
S
SunAhong1993 已提交
1755 1756
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1757
        scope_name=scope_name,
S
SunAhong1993 已提交
1758 1759 1760
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
def aten_feature_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。

    TorchScript示例:
        %119 : Tensor = aten::feature_dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Dropout", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, p=0.0)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

def aten_flatten(mapper, graph, node):
    """ 构造flatten的PaddleLayer。

    TorchScript示例:
        %x.8 : Tensor = aten::flatten(%x, %4, %2)
        参数含义:
        %x.8 (Tensor): flatten后结果。
        %x (Tensor): 输入Tensor。
        %4 (int): flatten的开始维度。
        %2 (int): flatten的结束维度。

    """
S
SunAhong1993 已提交
1802
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1803 1804 1805
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
1806
    layer_attrs = {}
S
SunAhong1993 已提交
1807 1808 1809 1810
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x
S
SunAhong1993 已提交
1811 1812 1813 1814 1815
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    # 处理输入1,即%4
    layer_attrs["start_axis"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%20
    layer_attrs["stop_axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
1816 1817 1818 1819 1820
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1821
        "paddle.flatten",
S
SunAhong1993 已提交
1822 1823
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1824 1825
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
    return current_inputs, current_outputs


def aten_Float(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。

    TorchScript示例:
        %3992 : float = aten::Float(%3991)
        参数含义:
        %3992 (int): 向上取整后的整数。
        %3991 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
1838
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1839 1840 1841 1842 1843 1844 1845
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3991
S
SunAhong1993 已提交
1846
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1847 1848 1849 1850
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1851
    graph.add_layer("prim.float", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
    return current_inputs, current_outputs


def aten_floor(mapper, graph, node):
    """ 构造向上取整的PaddleLayer。

    TorchScript示例:
        %3978 : int = aten::floor(%scale.18)
        参数含义:
        %3978 (int): 向上取整后的整数。
        %scale.18 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
1864
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1865 1866 1867 1868 1869 1870 1871
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%scale.18
S
SunAhong1993 已提交
1872
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1873
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1874 1875
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    graph.add_layer(
        "prim.type", 
        {'input': inputs_name[0]},
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
        "prim.str", 
        {'input': inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
        "prim.startswith", 
        {'input': inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
        scope_name=scope_name,
        start_str=string("VarType")) 
    graph.add_layer(
        "prim.if", 
        {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if"],
        scope_name=scope_name)
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
1898
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1899 1900
    block.add_layer("paddle.floor", inputs=copy.deepcopy(layer_inputs), outputs=copy.deepcopy(layer_outputs), scope_name=scope_name)
    if_layer.add_block(block)
S
SunAhong1993 已提交
1901
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1902 1903 1904 1905
    block.add_layer("prim.floor", inputs=copy.deepcopy(layer_inputs), outputs=copy.deepcopy(layer_outputs), scope_name=scope_name)
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.outputs.append(output_name)
S
SunAhong1993 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
    return current_inputs, current_outputs


def aten_floordiv(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。

    TorchScript示例:
        %channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
1919
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1920 1921 1922 1923 1924 1925 1926
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1927
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1928 1929
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1930
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
1931 1932 1933 1934
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1935
    graph.add_layer("prim.floordiv", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
    return current_inputs, current_outputs


def aten_floor_divide(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。

    TorchScript示例:
        %channels_per_group.2 : int = aten::floor_divide(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
1949
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1950 1951 1952 1953 1954 1955 1956
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1957
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1958 1959
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1960
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
1961 1962 1963 1964
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1965
    graph.add_layer("prim.floordiv", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
    return current_inputs, current_outputs


def aten_full_like(mapper, graph, node):
    """ 构造创建一个与输入具有相同的形状并且数据类型固定的Tensor的PaddleLayer。

    TorchScript示例:
        %159 : Tensor = aten::full_like(%val_if_large.3, %51, %50, %62, %53, %65, %66)
        参数含义:
        %159 (Tensor): 输出,全为固定值的Tensor。
        %val_if_large.3 (Tensor): 类似形状的Tensor。
        %51 (int/float/bool): 填充值。
        %50 (int): dtype。
        %62 (int): layout。
        %53 (int): device。
        %65 (bool): 是否计算梯度。
        %66 (int): 内存形式。
    """
S
SunAhong1993 已提交
1984
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1985 1986 1987 1988 1989 1990 1991 1992
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%val_if_large.3
S
SunAhong1993 已提交
1993
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
1994 1995 1996 1997 1998 1999 2000 2001
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2002
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011
        layer_inputs["fill_value"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%50,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.full_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2012
        scope_name=scope_name,
S
SunAhong1993 已提交
2013 2014 2015 2016
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
def aten_gather(mapper, graph, node):
    """ 构造gather激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::gather(%input.5, %18, %19, %20, %21)
        参数含义:
        %result.3 (Tensor): 输出,gather后的结果。
        %result.5 (Tensor): 需要gather的Tensor。
        %18 (int): 需要gather的维度。
        %19 (Tensor): 需要gather的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gather", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%18
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%19
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    
    graph.add_layer(
        "custom_layer:Gather", 
        inputs=layer_inputs, 
        outputs=layer_outputs, 
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
def aten_gelu(mapper, graph, node):
    """ 构造GeLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::gelu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,GELU后的结果。
        %result.5 (Tensor): 需要GELU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2068 2069
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gelu", mapper.nn_name2id)
S
SunAhong1993 已提交
2070
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2071
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2072 2073 2074 2075 2076
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2077
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2078 2079 2080 2081 2082
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2083
        "paddle.nn.GELU", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
    return current_inputs, current_outputs


def aten___getitem__(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。

    TorchScript示例:
        %v.1 : int = aten::__getitem__(%72, %88)
        参数含义:
        %v.1 (-): 输出,list中的元素。
        %72 (list): 需要获取元素的list。
        %88 (int): 索引。
    """
S
SunAhong1993 已提交
2097
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2098 2099 2100 2101 2102 2103 2104
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
2105
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2106 2107
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即%88
S
SunAhong1993 已提交
2108
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
2109 2110 2111 2112
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2113
    graph.add_layer("prim.getitem", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
    return current_inputs, current_outputs


def aten_gt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %83 : bool = aten::gt(%82, %78)
        参数含义:
        %83 (bool): 输出,第一个元素是否大于第二个元素。
        %82 (-): 需对比的输入1。
        %78 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2127
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2128 2129 2130 2131 2132 2133 2134
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%82
S
SunAhong1993 已提交
2135
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2136 2137
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%78
S
SunAhong1993 已提交
2138
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
2139 2140 2141 2142
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2143
    graph.add_layer("prim.gt", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
    return current_inputs, current_outputs


def aten_hardtanh_(mapper, graph, node):
    """ 构造hardtanh激活的PaddleLayer。

    TorchScript示例:
        %result.9 : Tensor = aten::hardtanh_(%input.20, %67, %66)
        参数含义:
        %result.9 (Tensor): 输出,hardtanh激活后的Tensor。
        %input.20 (Tensor): 需要hardtanh激活的Tensor。
        %67 (float): hardtanh激活的最小阈值。
        %66 (float): hardtanh激活的最大阈值。
    """
S
SunAhong1993 已提交
2158 2159
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardtanh", mapper.nn_name2id)
S
SunAhong1993 已提交
2160
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2161
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2162 2163 2164 2165 2166 2167
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.20
S
SunAhong1993 已提交
2168
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%67
    layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%66
    layer_attrs["max"] = mapper.attrs[inputs_name[2]]

    graph.add_layer(
        'paddle.nn.Hardtanh',
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2181
        scope_name=scope_name,
S
SunAhong1993 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
        **layer_attrs)
    return current_inputs, current_outputs


def aten_index_select(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。

    TorchScript示例:
        %bd.3 : Tensor = aten::index_select(%x2.3, %320, %371)
        参数含义:
        %bd.3 (Tensor): 输出,选择后的Tensor。
        %x2.3 (Tensor): 需要选择的Tensor。
        %320 (int): 维度。
        %371 (Tensor): 选择的索引。
    """
S
SunAhong1993 已提交
2197
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2198 2199 2200 2201 2202 2203 2204 2205
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x2.3
S
SunAhong1993 已提交
2206
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2207 2208 2209 2210 2211 2212
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%320
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2213
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2214 2215 2216
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%371
S
SunAhong1993 已提交
2217
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
S
SunAhong1993 已提交
2218 2219 2220 2221 2222 2223 2224 2225
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.index_select",
        inputs=layer_inputs,
        outputs=current_outputs,
S
SunAhong1993 已提交
2226
        scope_name=scope_name,
S
SunAhong1993 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
        **layer_attrs)
    return current_inputs, current_outputs


def aten_Int(mapper, graph, node):
    """ 构造强转为int的PaddleLayer。

    TorchScript示例:
        %1739 : int = aten::Int(%1738)
        参数含义:
        %1739 (int): 输出,int型数据。
        %1738 (-): 需要强转的数据。
    """
S
SunAhong1993 已提交
2240
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2241 2242 2243 2244 2245 2246 2247
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1738
S
SunAhong1993 已提交
2248
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2249 2250 2251 2252
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2253
    graph.add_layer("prim.int", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
    return current_inputs, current_outputs


def aten___is__(mapper, graph, node):
    """ 构造is not的PaddleLayer。

    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2267
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2268 2269 2270 2271 2272 2273 2274
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
2275
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2276 2277
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
2278
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
2279 2280 2281 2282
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2283
    graph.add_layer("prim.is", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
    return current_inputs, current_outputs


def aten___isnot__(mapper, graph, node):
    """ 构造is not的PaddleLayer。

    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2297
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2298 2299 2300 2301 2302 2303 2304
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
2305
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2306 2307
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
2308
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
2309 2310 2311 2312
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2313
    graph.add_layer("prim.isnot", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
    return current_inputs, current_outputs


def aten_layer_norm(mapper, graph, node):
    """ 构造层归一化的PaddleLayer。

    TorchScript示例:
        %input0.4 : Tensor = aten::layer_norm(%input.6, %1181, %174, %173, %70, %71)
        参数含义:
        %input0.4 (Tensor): 输出,层归一化后的结果。
        %input.6 (Tensor): 需要进行层归一化的特征层。
        %1181 (list/int/tuple): 需规范化的shape。
        %174 (Tensor): weights。
        %173 (Tensor): bias。
        %70 (float): 指明在计算过程中是否添加较小的值到方差中以防止除零。
        %71 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
2331 2332
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("layernorm", mapper.nn_name2id)
S
SunAhong1993 已提交
2333
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2334
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2335 2336 2337 2338 2339 2340
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.6
S
SunAhong1993 已提交
2341
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2342 2343 2344 2345 2346 2347 2348
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1181
    layer_attrs["normalized_shape"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%174
    weights = mapper.pytorch_params[inputs_name[2]]
S
SunAhong1993 已提交
2349
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
2350 2351 2352 2353
    # 处理输入3,即%173
    if inputs_name[3] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[3]]
        if bias is not None:
S
SunAhong1993 已提交
2354
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
2355
    else:
S
SunAhong1993 已提交
2356
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
2357 2358 2359 2360 2361 2362 2363
    # 处理输入4,即%70
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.LayerNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2364
        scope_name=scope_name,
S
SunAhong1993 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
        **layer_attrs)
    return current_inputs, current_outputs


def aten_le(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %80 : bool = aten::le(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于等于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2379
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2380 2381 2382 2383 2384 2385 2386
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
2387
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2388 2389
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
2390
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
2391 2392 2393 2394
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2395
    graph.add_layer("prim.le", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
    return current_inputs, current_outputs


def aten_leaky_relu_(mapper, graph, node):
    """ 构造leaky relu激活的PaddleLayer。

    TorchScript示例:
        %input.117 : Tensor = aten::leaky_relu_(%input.114, %1570)
        参数含义:
        %input.117 (Tensor): 输出,leaky relu后的结果。
        %input.114 (Tensor): 需要leaky relu的Tensor。
        %1570 (float): 输入中的元素小于0时的斜率。
    """
S
SunAhong1993 已提交
2409 2410
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("leakly_relu", mapper.nn_name2id)
S
SunAhong1993 已提交
2411
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2412
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2413 2414 2415 2416 2417 2418
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2419
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1570
    layer_attrs["negative_slope"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.LeakyReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2430
        scope_name=scope_name,
S
SunAhong1993 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
        **layer_attrs)
    return current_inputs, current_outputs


def aten_len(mapper, graph, node):
    """ 构造获取list长度的PaddleLayer。

    TorchScript示例:
        %85 : int = aten::len(%83)
        参数含义:
        %85 (int): 输出,list的长度。
        %72 (list): 需要获取长度的list。
    """
S
SunAhong1993 已提交
2444
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2445 2446 2447 2448 2449 2450 2451
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
2452
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2453 2454 2455 2456
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2457
    graph.add_layer("prim.len", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
    return current_inputs, current_outputs


def aten_log(mapper, graph, node):
    """ 构构造log的PaddleLayer。

    TorchScript示例:
        %787 : Tensor = aten::log(%786)
        参数含义:
        %787 (Tensor): 输出,取log的Tensor。
        %786 (Tensor): 需要获取log的Tensor。
    """
S
SunAhong1993 已提交
2470
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2471 2472 2473 2474 2475 2476 2477
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
2478
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2479 2480 2481 2482 2483
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2484
        "paddle.log", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2485 2486 2487
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
def aten_lstm(mapper, graph, node):
    """ 构造长短期记忆网络(LSTM)的PaddleLayer。

    TorchScript示例:
        %input.96, %551, %552 = aten::lstm(%input.95, %734, %549, %526, %525, %524, %526, %526, %526)
        参数含义:
        %input.96 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %551 (Tensor): cell state。
        %552 (Tensor): hidden state。
        %input.95 (Tensor): 网络输入。
        %734 (Tensor): 网络的初始状态。
        %549 (list): 所有权重组合成的list。
        %526 (bool): 是否使用bias。
        %525 (int): 网络层数。
        %524 (float): dropout概率。
        %526 (bool): 是否为训练阶段。
        %526 (bool): 是否使用双向LSTM。
        %526 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("lstm", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
            layer_attrs["hidden_size"] = int(mapper.paddle_params[param_name].shape[0] / 4)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name].shape[1])
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
            mapper.paddle_params["{}.weight_{}".format(op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name, part_name))
        else:
            part_name = param_name.split("_bias_")[-1]
            mapper.paddle_params["{}.bias_{}".format(op_name, part_name)] = mapper.paddle_params[param_name]
        mapper.paddle_params.pop(param_name)
        
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
            bias_shape= mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype("float32")
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.LSTM",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
def aten_lt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %80 : bool = aten::lt(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2581
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2582 2583 2584 2585 2586 2587 2588
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
2589
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2590 2591
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
2592
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
2593 2594 2595 2596
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2597
    graph.add_layer("prim.lt", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
    return current_inputs, current_outputs


def aten_masked_fill_(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。

    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill_(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
S
SunAhong1993 已提交
2612
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
S
SunAhong1993 已提交
2622
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2623 2624 2625 2626
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
2627 2628
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2629
    # 处理输入1,即%scores.2
S
SunAhong1993 已提交
2630
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
2631 2632 2633 2634
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
S
SunAhong1993 已提交
2635 2636
        outputs=[inputs_name[1] + "_not"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2637
    graph.add_layer(
S
SunAhong1993 已提交
2638
        "paddle.cast",
S
SunAhong1993 已提交
2639 2640
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
S
SunAhong1993 已提交
2641
        scope_name=scope_name,
S
SunAhong1993 已提交
2642 2643
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
S
SunAhong1993 已提交
2644
        "paddle.cast",
S
SunAhong1993 已提交
2645 2646
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
S
SunAhong1993 已提交
2647
        scope_name=scope_name,
S
SunAhong1993 已提交
2648 2649 2650 2651 2652
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
S
SunAhong1993 已提交
2653 2654
        outputs=[inputs_name[0] + "_not_mask"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2655
    # 处理输入2,即%46
S
SunAhong1993 已提交
2656
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
S
SunAhong1993 已提交
2657 2658 2659 2660
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
S
SunAhong1993 已提交
2661
        scope_name=scope_name,
S
SunAhong1993 已提交
2662 2663 2664 2665 2666
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
S
SunAhong1993 已提交
2667
        scope_name=scope_name,
S
SunAhong1993 已提交
2668 2669 2670 2671 2672 2673 2674
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
S
SunAhong1993 已提交
2675 2676
        outputs=[inputs_name[2] + "_cond"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2677 2678
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
S
SunAhong1993 已提交
2679 2680
        outputs=[inputs_name[2] + "_if"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2681
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
2682
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
2683 2684 2685
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
S
SunAhong1993 已提交
2686 2687
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2688
    if_layer.add_block(block)
S
SunAhong1993 已提交
2689
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
2690 2691 2692 2693
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
S
SunAhong1993 已提交
2694 2695
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2696 2697 2698 2699 2700
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
S
SunAhong1993 已提交
2701
        "paddle.add",
S
SunAhong1993 已提交
2702 2703
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
S
SunAhong1993 已提交
2704 2705
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    return current_inputs, current_outputs


def aten_masked_fill(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。

    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
S
SunAhong1993 已提交
2720
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
S
SunAhong1993 已提交
2730
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2731 2732 2733 2734
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
2735 2736
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2737
    # 处理输入1,即%scores.2
S
SunAhong1993 已提交
2738
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
2739 2740 2741 2742
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
S
SunAhong1993 已提交
2743 2744
        outputs=[inputs_name[1] + "_not"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2745
    graph.add_layer(
S
SunAhong1993 已提交
2746
        "paddle.cast",
S
SunAhong1993 已提交
2747 2748
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
S
SunAhong1993 已提交
2749
        scope_name=scope_name,
S
SunAhong1993 已提交
2750 2751
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
S
SunAhong1993 已提交
2752
        "paddle.cast",
S
SunAhong1993 已提交
2753 2754
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
S
SunAhong1993 已提交
2755
        scope_name=scope_name,
S
SunAhong1993 已提交
2756 2757 2758 2759 2760
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
S
SunAhong1993 已提交
2761 2762
        outputs=[inputs_name[0] + "_not_mask"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2763
    # 处理输入2,即%46
S
SunAhong1993 已提交
2764
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
S
SunAhong1993 已提交
2765 2766 2767 2768
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
S
SunAhong1993 已提交
2769
        scope_name=scope_name,
S
SunAhong1993 已提交
2770 2771 2772 2773 2774
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
S
SunAhong1993 已提交
2775
        scope_name=scope_name,
S
SunAhong1993 已提交
2776 2777 2778 2779 2780 2781 2782
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
S
SunAhong1993 已提交
2783 2784
        outputs=[inputs_name[2] + "_cond"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2785 2786
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
S
SunAhong1993 已提交
2787 2788
        outputs=[inputs_name[2] + "_if"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2789
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
2790
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
2791 2792 2793
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
S
SunAhong1993 已提交
2794 2795
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2796
    if_layer.add_block(block)
S
SunAhong1993 已提交
2797
    block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
2798 2799 2800 2801
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
S
SunAhong1993 已提交
2802 2803
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
2804 2805 2806 2807 2808
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
S
SunAhong1993 已提交
2809
        "paddle.add",
S
SunAhong1993 已提交
2810 2811
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
S
SunAhong1993 已提交
2812 2813
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
    return current_inputs, current_outputs


def aten_max(mapper, graph, node):
    """ 构造获取最大值的PaddleLayer。

    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::max(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
2827
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
2838
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2839 2840 2841
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2842
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2843 2844 2845 2846
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
2847
            "paddle.maximum", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
    else:
        pass
    return current_inputs, current_outputs


def aten_max_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
S
SunAhong1993 已提交
2867 2868
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
2869
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2870
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2871 2872
    layer_inputs = {}
    layer_attrs = {}
S
SunAhong1993 已提交
2873
    layer_attrs_tmp = {}
S
SunAhong1993 已提交
2874 2875 2876 2877
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.11
S
SunAhong1993 已提交
2878
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2879 2880 2881 2882
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
S
SunAhong1993 已提交
2883 2884
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
    layer_attrs_tmp["pool_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
2885
    # 处理输入2,即%23
S
SunAhong1993 已提交
2886 2887
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
    layer_attrs_tmp["pool_stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
2888
    # 处理输入3,即%21
S
SunAhong1993 已提交
2889 2890
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
    layer_attrs_tmp["pool_padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
2891 2892 2893 2894
    # 处理输入4,即%22
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
2895
        outputs=[inputs_name[4] + "_assert"],
S
SunAhong1993 已提交
2896
        scope_name=scope_name + "_assert",
S
SunAhong1993 已提交
2897 2898 2899 2900 2901
        type="eq",
        key=mapper.attrs[inputs_name[4]],
        value=[1, [1, 1]])
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
2902
    layer_attrs_tmp["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
2903 2904 2905 2906 2907 2908 2909
    
    graph.add_layer(
        "paddle.nn.MaxPool2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
    return current_inputs, current_outputs


def aten_matmul(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。

    TorchScript示例:
        %output.2 : Tensor = aten::matmul(%101, %111)
        参数含义:
        %output.2 (Tensor): 输出,相乘后的结果。
        %101 (Tensor): 矩阵1。
        %102 (Tensor): 矩阵2。
    """
S
SunAhong1993 已提交
2923
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2924 2925 2926 2927 2928 2929 2930
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%101
S
SunAhong1993 已提交
2931
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
2932 2933
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%102
S
SunAhong1993 已提交
2934
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
2935 2936 2937 2938
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2939
    graph.add_layer("paddle.matmul", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
    return current_inputs, current_outputs


def aten_min(mapper, graph, node):
    """ 构造获取最小值的PaddleLayer。

    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::min(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
2953
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
2964
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2965 2966 2967
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2968
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2969 2970 2971 2972
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
2973
            "paddle.minimum", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
    else:
        pass
    return current_inputs, current_outputs


def aten_mean(mapper, graph, node):
    """ 构造求均值的PaddleLayer。

    TorchScript示例:
        %x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
        参数含义:
        %x.28 (Tensor): 输出,求均值后的结果。
        %result.1 (Tensor): 输入,需要求均值的Tensor。
        %4967 (int/list): 求平均值运算的维度。
        %3 (bool): 是否在输出Tensor中保留减小的维度。
        %2 (Tensor): 结果Tensor。
    """
S
SunAhong1993 已提交
2991
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2992 2993 2994 2995 2996 2997 2998 2999
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.1
S
SunAhong1993 已提交
3000 3001
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3002 3003 3004
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4967
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3005
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3006 3007
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3008 3009
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
3010 3011 3012
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%3
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3013
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3014 3015
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
3016 3017
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
S
SunAhong1993 已提交
3018 3019 3020
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
3021
        "paddle.mean",
S
SunAhong1993 已提交
3022 3023
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3024
        scope_name=scope_name,
S
SunAhong1993 已提交
3025 3026
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053


def aten_meshgrid(mapper, graph, node):
    """ 构造对每个张量做扩充操作的PaddleLayer。

    TorchScript示例:
        %out.39 : int = aten::mshgrid(%input.1)
        参数含义:
        %out.39 (Tensor): 输出,扩充后的结果。
        %input.1 (Tensor): 输入。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["args"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = layer_inputs.values()
    current_outputs = layer_outputs

    graph.add_layer("paddle.meshgrid", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065


def aten_mul(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。

    TorchScript示例:
        %size_prods.39 : int = aten::mul(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
S
SunAhong1993 已提交
3066
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3067 3068 3069 3070 3071 3072 3073
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
S
SunAhong1993 已提交
3074
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3075 3076
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
S
SunAhong1993 已提交
3077
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
3078 3079 3080 3081 3082
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3083
    graph.add_layer("prim.mul", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
    return current_inputs, current_outputs


def aten_mul_(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。

    TorchScript示例:
        %size_prods.39 : int = aten::mul_(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
S
SunAhong1993 已提交
3097
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3098 3099 3100 3101 3102 3103 3104
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
S
SunAhong1993 已提交
3105
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3106 3107
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
S
SunAhong1993 已提交
3108
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
3109 3110 3111 3112 3113
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3114
    graph.add_layer("prim.mul", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
    return current_inputs, current_outputs


def aten_ne(mapper, graph, node):
    """ 构造判断数值是否不相等的PaddleLayer。

    TorchScript示例:
        %134 : bool = aten::ne(%133, %132)
        参数含义:
        %134 (bool): 对比后结果。
        %133 (-): 需对比的输入1。
        %132 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3128
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3129 3130 3131 3132 3133 3134 3135
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3136
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3137 3138
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
3139
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
3140 3141 3142 3143
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3144
    graph.add_layer("prim.ne", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
    return current_inputs, current_outputs


def aten_neg(mapper, graph, node):
    """ 构造对数值取负的PaddleLayer。

    TorchScript示例:
        %909 : int = aten::neg(%908)
        参数含义:
        %909 (int): 取负后结果。
        %908 (int): 需取负的输入。
    """
S
SunAhong1993 已提交
3157
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3158 3159 3160 3161 3162 3163 3164
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3165
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3166 3167 3168 3169
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3170
    graph.add_layer("prim.neg", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
    return current_inputs, current_outputs


def aten___not__(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。

    TorchScript示例:
        %4498 : bool = aten::__not__(%aux_defined.2)
        参数含义:
        %4498 (bool): 取负后结果。
        %aux_defined.2 (bool): 需取负的输入。
    """
S
SunAhong1993 已提交
3183
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3184 3185 3186 3187 3188 3189 3190
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3191
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3192 3193 3194 3195
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3196
    graph.add_layer("prim.not", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
    return current_inputs, current_outputs


def aten_ones(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。

    TorchScript示例:
        %input.49 : Tensor = aten::ones(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
3213
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3227
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.ones",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3237
        scope_name=scope_name,
S
SunAhong1993 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
        **layer_attrs)
    return current_inputs, current_outputs


def aten_permute(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。

    TorchScript示例:
        %2385 : Tensor = aten::permute(%cls_confs0.2, %2384)
        参数含义:
        %2385 (Tensor): 重排后的结果。
        %cls_confs0.2 (Tensor): 需要重排的Tensor。
        %2348 (list): 依照此参数进行重排。
    """
S
SunAhong1993 已提交
3252
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3253 3254 3255 3256 3257 3258 3259 3260
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%cls_confs0.2
S
SunAhong1993 已提交
3261
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3262 3263 3264 3265 3266 3267 3268 3269
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2348
    if inputs_name[1] in mapper.attrs:
        layer_attrs["perm"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3270
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3271 3272 3273 3274
        layer_inputs["perm"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
3275
        "paddle.transpose",
S
SunAhong1993 已提交
3276 3277
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3278
        scope_name=scope_name,
S
SunAhong1993 已提交
3279 3280 3281 3282
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
def aten_pixel_shuffle(mapper, graph, node):
    """ 构造以像素的方式重排的PaddleLayer。

    TorchScript示例:
        %x.6 : aten::pixel_shuffle(%input.101, %726)
        参数含义:
        %x.6 (Tensor): 输出,重排后的Tensor。
        %input.101 (Tensor): 需要重排的Tensor。
        %726 (int): 增大空间分辨率的增大因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.101
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%726
    layer_attrs["upscale_factor"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.functional.pixel_shuffle",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324
def aten_pow(mapper, graph, node):
    """ 构造指数激活的PaddleLayer。

    TorchScript示例:
        %x.6 : Tensor = aten::pow(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,指数激活后的Tensor。
        %4700 (Tensor): 需要指数激活的Tensor。
    """
S
SunAhong1993 已提交
3325
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3326 3327 3328 3329 3330 3331 3332 3333
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
3334
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3335 3336 3337 3338 3339
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3340
        layer_attrs["y"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3341 3342
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3343 3344
                            current_outputs, scope_name)
        layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
3345 3346 3347
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
3348
        "paddle.pow",
S
SunAhong1993 已提交
3349 3350
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3351
        scope_name=scope_name,
S
SunAhong1993 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
        **layer_attrs)
    return current_inputs, current_outputs


def aten_relu(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
3367 3368
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
S
SunAhong1993 已提交
3369
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3370
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3371 3372 3373 3374 3375
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
3376
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3377 3378 3379 3380 3381
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
3382
        "paddle.nn.ReLU", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
    return current_inputs, current_outputs


def aten_relu_(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu_(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
3397 3398
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
S
SunAhong1993 已提交
3399
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3400
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3401 3402 3403 3404 3405
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
3406
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3407 3408 3409 3410 3411
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
3412
        "paddle.nn.ReLU", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
    return current_inputs, current_outputs


def aten_relu6(mapper, graph, node):
    """ 构造ReLU6激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu6(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU6后的结果。
        %result.5 (Tensor): 需要ReLU6的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
3427 3428
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu6", mapper.nn_name2id)
S
SunAhong1993 已提交
3429
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3430
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3431 3432 3433 3434 3435
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
3436
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3437 3438 3439 3440 3441
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
3442
        "paddle.nn.ReLU6", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
    return current_inputs, current_outputs


def aten_repeat(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。

    TorchScript示例:
        701 : Tensor = aten::repeat(%699, %700)
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (list): 指定每个维度复制的次数。
    """
S
SunAhong1993 已提交
3456
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3457 3458 3459 3460 3461 3462 3463 3464
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
S
SunAhong1993 已提交
3465
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3466 3467 3468 3469 3470 3471 3472 3473
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3474
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3475 3476 3477 3478 3479 3480 3481
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3482
        scope_name=scope_name,
S
SunAhong1993 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
        **layer_attrs)
    return current_inputs, current_outputs


def aten_reshape(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。

    TorchScript示例:
        %x.6 : Tensor = aten::reshape(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,reshape后的Tensor。
        %4700 (Tensor): 需要reshape的Tensor。
        %4703 (list): 形状大小组成的list。
    """
S
SunAhong1993 已提交
3497
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3498 3499 3500 3501 3502 3503 3504 3505
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
3506
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3507 3508 3509 3510 3511 3512 3513 3514
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3515
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3516 3517
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
3518
        
S
SunAhong1993 已提交
3519
    graph.add_layer(
S
SunAhong1993 已提交
3520
        "paddle.reshape",
S
SunAhong1993 已提交
3521 3522
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3523
        scope_name=scope_name,
S
SunAhong1993 已提交
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
        **layer_attrs)
    return current_inputs, current_outputs


def aten_rsub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer,计算公式为:out = y - alpha * x。

    TorchScript示例:
        %31 : Tensor = aten::rsub(%30, %13, %7)
        参数含义:
        %31 (Tensor): 相减结果。
        %30 (Tensor): 输入Tensor x。
        %13 (int/float): 输入数值 y。
        %7 (int/float): alpha。
    """
S
SunAhong1993 已提交
3539
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3540 3541 3542 3543 3544 3545 3546 3547
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%30
S
SunAhong1993 已提交
3548
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3549 3550
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%13
S
SunAhong1993 已提交
3551
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
3552 3553
    layer_inputs["y"] = inputs_name[1]
    # 处理输入2,即%7
S
SunAhong1993 已提交
3554
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
S
SunAhong1993 已提交
3555 3556 3557 3558
    layer_inputs["alpha"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3559
    graph.add_layer("prim.rsub", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
    return current_inputs, current_outputs


def aten_ScalarImplicit(mapper, graph, node):
    """ 构造获取scalar的PaddleLayer。

    TorchScript示例:
        %89 : Scalar = aten::ScalarImplicit(%end.1)
        参数含义:
        %89 (Scalar): 输出,得到的Scalar。
        %end.1 (-): 组要转换的数据。

    【注意】由于Paddle无Scalar,所以最后转换为Tensor。
    """
S
SunAhong1993 已提交
3574
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3575 3576 3577 3578 3579 3580 3581 3582
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
3583
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3584 3585 3586 3587 3588 3589
    layer_inputs["input"] = inputs_name[0]
    input_type = list(node.inputs())[0].type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if str(input_type) == "Tensor":
        graph.add_layer(
S
SunAhong1993 已提交
3590
            "prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
    else:
        raise Exception(
            "The input type {} of aten::ScalarImplicit is not implemented yet!"
        ).format(input_type)
    return current_inputs, current_outputs


def aten_select(mapper, graph, node):
    """ 构造选取特定维度Variable的PaddleLayer。

    TorchScript示例:
        %19 : Tensor = aten::select(%18, %8, %7)
        参数含义:
        %19 (Tensor): 输出,选取的Tensor。
        %18 (Tensor): 需要选取的Tensor。
        %8 (int): select的维度。
        %7 (int): select的第n个向量。
    """
S
SunAhong1993 已提交
3609
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3610 3611 3612 3613 3614 3615 3616 3617
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%18
S
SunAhong1993 已提交
3618
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3619 3620 3621 3622
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%8
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%75
S
SunAhong1993 已提交
3623
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
S
SunAhong1993 已提交
3624 3625 3626 3627 3628 3629 3630 3631
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.select",
        inputs=layer_inputs,
        outputs=current_outputs,
S
SunAhong1993 已提交
3632
        scope_name=scope_name,
S
SunAhong1993 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
        **layer_attrs)
    return current_inputs, current_outputs


def aten__set_item(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。

    TorchScript示例:
        = aten::_set_item(%features.1, %out_name.1, %x.3)
        参数含义:
        %features.1 (list): dict。
        %out_name.1 (-): dict的key。
        %x.3 (-): dict的value。
    """
S
SunAhong1993 已提交
3647
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3648 3649 3650 3651 3652
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = []
    # 处理输入0,即%features.1
S
SunAhong1993 已提交
3653
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3654 3655
    layer_inputs["dict"] = inputs_name[0]
    # 处理输入1,即%out_name.1
S
SunAhong1993 已提交
3656
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
3657 3658
    layer_inputs["key"] = inputs_name[1]
    # 处理输入2,即%x.3
S
SunAhong1993 已提交
3659
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
S
SunAhong1993 已提交
3660 3661 3662 3663
    layer_inputs["value"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3664
    graph.add_layer("prim.set_item", inputs=layer_inputs, outputs=[], scope_name=scope_name)
S
SunAhong1993 已提交
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
    return current_inputs, current_outputs


def aten_sigmoid(mapper, graph, node):
    """ 构造sigmoid激活的PaddleLayer。

    TorchScript示例:
        %55 : Tensor = aten::sigmoid(%54)
        参数含义:
        %55 (Tensor): 输出,sigmoid后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
3677 3678
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("sigmoid", mapper.nn_name2id)
S
SunAhong1993 已提交
3679
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3680
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3681 3682 3683 3684 3685
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%54
S
SunAhong1993 已提交
3686
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3687 3688 3689 3690 3691
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
3692
        "paddle.nn.Sigmoid", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
    return current_inputs, current_outputs


def aten_sin(mapper, graph, node):
    """ 构造数学计算sin的PaddleLayer。

    TorchScript示例:
        %94 : Tensor = aten::sin(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,sin之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
3705
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3706 3707 3708 3709 3710 3711 3712
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
3713
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3714 3715 3716 3717
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3718
    graph.add_layer("paddle.sin", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
    return current_inputs, current_outputs


def aten_size(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
        %73 : int[] = aten::size(%x.12, %10)
        参数含义:
        %73 (list): 输出,shape的list。
        %x.12 (Tensor): 需要获取shape的Tensor。
        %10 (int): 非必须,代表维度。
    """
S
SunAhong1993 已提交
3732
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3733 3734 3735 3736 3737 3738 3739 3740
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
3741
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if len(inputs_name) > 1:
        # 处理输入1,即%12
        if inputs_name[1] in mapper.attrs:
            layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3751
                                current_outputs, scope_name)
S
SunAhong1993 已提交
3752 3753 3754 3755 3756 3757
            layer_inputs["dim"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.shape_dim",
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
3758
            scope_name=scope_name,
S
SunAhong1993 已提交
3759 3760 3761 3762
            **layer_attrs)
        return current_inputs, current_outputs

    graph.add_layer(
S
SunAhong1993 已提交
3763
        "prim.shape", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
    return current_inputs, current_outputs


def aten_slice(mapper, graph, node):
    """ 构造切分list或Variable的PaddleLayer。

    TorchScript示例:
        %83 : int[] = aten::slice(%73, %_81, %82, %75, %77)
        参数含义:
        %83 (list/Tensor): 输出,切分后的list。
        %73 (list/Tensor): 需要切分的list。
        %_81 (int): 切分的维度,不一定存在。
        %82 (int): 切分的开始索引。
        %75 (int): 切分的结束索引。
        %77 (int): 切分的步长。
    """
S
SunAhong1993 已提交
3780
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    if len(inputs_name) == 5:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3790 3791
                            current_outputs, scope_name)
        layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800

        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        # 处理输入1,即%_81
        if inputs_name[1] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[1] + "_list"],
S
SunAhong1993 已提交
3801
                scope_name=scope_name,
S
SunAhong1993 已提交
3802 3803 3804
                input0=mapper.attrs[inputs_name[1]])
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3805
                                current_outputs, scope_name)
S
SunAhong1993 已提交
3806 3807 3808
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[1]},
S
SunAhong1993 已提交
3809 3810
                outputs=[inputs_name[1] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
            current_inputs.append(inputs_name[1])
        layer_inputs["axes"] = inputs_name[1] + "_list"
        current_inputs.append(inputs_name[1] + "_list")
        current_outputs.append(inputs_name[1] + "_list")
        # 处理输入2,即%82
        if inputs_name[2] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[2] + "_list"],
S
SunAhong1993 已提交
3821
                scope_name=scope_name,
S
SunAhong1993 已提交
3822 3823 3824
                input0=mapper.attrs[inputs_name[2]])
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
3825
                                current_outputs, scope_name)
S
SunAhong1993 已提交
3826 3827 3828
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[2]},
S
SunAhong1993 已提交
3829 3830
                outputs=[inputs_name[2] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
            current_inputs.append(inputs_name[2])
        layer_inputs["starts"] = inputs_name[2] + "_list"
        current_inputs.append(inputs_name[2] + "_list")
        current_outputs.append(inputs_name[2] + "_list")
        # 处理输入3,即%85
        if inputs_name[3] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[3] + "_list"],
S
SunAhong1993 已提交
3841
                scope_name=scope_name,
S
SunAhong1993 已提交
3842 3843 3844
                input0=mapper.attrs[inputs_name[3]])
        else:
            mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
3845
                                current_outputs, scope_name)
S
SunAhong1993 已提交
3846 3847 3848
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[3]},
S
SunAhong1993 已提交
3849 3850
                outputs=[inputs_name[3] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
            current_inputs.append(inputs_name[3])
        layer_inputs["ends"] = inputs_name[3] + "_list"
        current_inputs.append(inputs_name[3] + "_list")
        current_outputs.append(inputs_name[3] + "_list")
        # 处理输入4,即%77
        if inputs_name[4] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[4] + "_list"],
S
SunAhong1993 已提交
3861
                scope_name=scope_name,
S
SunAhong1993 已提交
3862 3863 3864
                input0=mapper.attrs[inputs_name[4]])
        else:
            mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
3865
                                current_outputs, scope_name)
S
SunAhong1993 已提交
3866 3867 3868
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[4]},
S
SunAhong1993 已提交
3869 3870
                outputs=[inputs_name[4] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
3871 3872 3873 3874 3875 3876
            current_inputs.append(inputs_name[4])
        layer_inputs["strides"] = inputs_name[4] + "_list"
        current_inputs.append(inputs_name[4] + "_list")
        current_outputs.append(inputs_name[4] + "_list")

        graph.add_layer(
S
SunAhong1993 已提交
3877
            "paddle.strided_slice",
S
SunAhong1993 已提交
3878
            inputs=layer_inputs,
S
SunAhong1993 已提交
3879 3880
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3881 3882 3883
    else:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3884
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3885 3886 3887
        layer_inputs["input"] = inputs_name[0]
        # 处理输入1,即%82
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3888
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3889 3890 3891
        layer_inputs["start"] = inputs_name[1]
        # 处理输入2,即%75
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
3892
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3893 3894 3895
        layer_inputs["end"] = inputs_name[2]
        # 处理输入3,即%77
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
3896
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3897 3898 3899 3900 3901
        layer_inputs["step"] = inputs_name[3]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())

        graph.add_layer(
S
SunAhong1993 已提交
3902
            "prim.slice", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
    return current_inputs, current_outputs


def aten_softmax(mapper, graph, node):
    """ 构造softmax激活的PaddleLayer。

    TorchScript示例:
        %input2.1 : Tensor = aten::softmax(%input.5, %80, %72)
        参数含义:
        %input2.1 (Tensor): 激活后结果。
        %input.5 (Tensor): 需要激活的Tensor。
        %80 (int): 指定对输入Tensor进行运算的轴。
        %72 (str): 类型,默认为None。
    """
S
SunAhong1993 已提交
3917 3918
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softmax", mapper.nn_name2id)
S
SunAhong1993 已提交
3919
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3920
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3921 3922 3923 3924 3925 3926
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
3927
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3928 3929 3930 3931 3932 3933 3934 3935 3936
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["axis"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.Softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3937
        scope_name=scope_name,
S
SunAhong1993 已提交
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
        **layer_attrs)
    return current_inputs, current_outputs


def aten_softplus(mapper, graph, node):
    """ 构造softplus激活的PaddleLayer。

    TorchScript示例:
        %54 : Tensor = aten::softplus(%x.31, %30, %29)
        参数含义:
        %54 (Tensor): 激活后结果。
        %x.31 (Tensor): 需要激活的Tensor。
        %30 (int): beta。
        %29 (int): 阈值。
    """
S
SunAhong1993 已提交
3953 3954
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softplus", mapper.nn_name2id)
S
SunAhong1993 已提交
3955
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3956
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3957 3958 3959 3960 3961 3962
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
3963
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["beta"] = mapper.attrs[inputs_name[1]]
    layer_attrs["threshold"] = mapper.attrs[inputs_name[2]]

    graph.add_layer(
        "paddle.nn.Softplus",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3974
        scope_name=scope_name,
S
SunAhong1993 已提交
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
        **layer_attrs)
    return current_inputs, current_outputs


def aten_sqrt(mapper, graph, node):
    """ 构构造sqrt的PaddleLayer。

    TorchScript示例:
        %787 : Tensor = aten::sqrt(%786)
        参数含义:
        %787 (Tensor): 输出,取sqrt的Tensor。
        %786 (Tensor): 需要获取sqrt的Tensor。
    """
S
SunAhong1993 已提交
3988
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3989 3990 3991 3992 3993 3994 3995
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
3996
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
3997 3998 3999 4000 4001
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4002
        "paddle.sqrt", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
    return current_inputs, current_outputs


def aten_squeeze(mapper, graph, node):
    """ 构造删除位数为1的维度的PaddleLayer。

    TorchScript示例:
        %12 : Tensor = aten::squeeze(%start_logits.1, %4)
        参数含义:
        %12 (Tensor): 输出,删除维度后的Tensor。
        %start_logits.1 (Tensor): 需要删除维度的Tensor。
        %4 (int): 维度。
    """
S
SunAhong1993 已提交
4016
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4017 4018 4019 4020 4021 4022 4023 4024
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%start_logits.1
S
SunAhong1993 已提交
4025
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4026 4027 4028 4029 4030 4031 4032 4033
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4034
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4035 4036 4037
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
4038
        "paddle.squeeze",
S
SunAhong1993 已提交
4039 4040
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4041
        scope_name=scope_name,
S
SunAhong1993 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
        **layer_attrs)
    return current_inputs, current_outputs


def aten_stack(mapper, graph, node):
    """ 构造堆叠Tensor的PaddleLayer。

    TorchScript示例:
        %x.222 : Tensor = aten::stack(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,堆叠后的结果。
        %i.12 (Tensor): 需要堆叠的Tensor组成的Tensor。
        %7 (int): 堆叠的轴。
    """
S
SunAhong1993 已提交
4056
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4057 4058 4059 4060 4061 4062 4063 4064
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
4065
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4066 4067 4068 4069 4070 4071 4072 4073
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4074
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4075 4076 4077 4078 4079 4080
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.stack",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4081
        scope_name=scope_name,
S
SunAhong1993 已提交
4082 4083 4084 4085 4086 4087 4088 4089
        **layer_attrs)
    return current_inputs, current_outputs


def aten_sub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。

    TorchScript示例:
S
SunAhong1993 已提交
4090
        %840 : int = aten::sub(%839, %836, %3)
S
SunAhong1993 已提交
4091 4092 4093 4094
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
S
SunAhong1993 已提交
4095
        %3 (-): alpha。
S
SunAhong1993 已提交
4096
    """
S
SunAhong1993 已提交
4097
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4098 4099 4100
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
4101
    layer_attrs = {}
S
SunAhong1993 已提交
4102 4103 4104 4105
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%839
S
SunAhong1993 已提交
4106
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4107 4108 4109
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%836
    mapper._check_input(
S
SunAhong1993 已提交
4110
        graph, inputs_node[1], inputs_name[1], current_outputs, scope_name, add_dim=True)
S
SunAhong1993 已提交
4111
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
    # 处理输入2,即%3
    if len(inputs_node) > 2:
        if inputs_name[2] in mapper.attrs:
            layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs, scope_name)
            layer_inputs["alpha"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
    else:
        layer_attrs["alpha"] = 1.0
S
SunAhong1993 已提交
4123 4124 4125
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4126
    graph.add_layer("prim.sub", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, **layer_attrs)
S
SunAhong1993 已提交
4127 4128 4129
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
def aten_sub_(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。

    TorchScript示例:
        %840 : int = aten::sub_(%839, %836, %3)
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
        %3 (-): alpha。
    """
    return aten_sub(mapper, graph, node)

S
SunAhong1993 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151
def aten_t(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。

    TorchScript示例:
        %840 : int = aten::sub(%839, %836)
        参数含义:
        %109 (Tensor): 输出,转置后的矩阵。
        %102 (Tensor): 需要转置的Tensor。
    """
S
SunAhong1993 已提交
4152
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4153 4154 4155 4156 4157 4158 4159
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
4160
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4161 4162 4163 4164 4165
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4166
        "paddle.transpose",
S
SunAhong1993 已提交
4167 4168
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4169
        scope_name=scope_name,
S
SunAhong1993 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
        perm=[1, 0])
    return current_inputs, current_outputs


def aten_tanh(mapper, graph, node):
    """ 构造tanh激活的PaddleLayer。

    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,tanh后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
4183 4184
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("tanh", mapper.nn_name2id)
S
SunAhong1993 已提交
4185
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4186
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4187 4188 4189 4190 4191
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4192
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4193 4194 4195 4196 4197
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4198
        "paddle.nn.Tanh", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
    return current_inputs, current_outputs


def aten_split(mapper, graph, node):
    """ 构造分割Tensor的PaddleLayer。

    TorchScript示例:
        %160 : Tensor[] = aten::split(%159, %135, %123)
        参数含义:
        %160 (Tensor): 输出,分割后的矩阵。
        %159 (Tensor): 需要分割的Tensor。
        %135 (int): 分割的数量。
        %723 (int): 轴。
    """
S
SunAhong1993 已提交
4213
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4214 4215 4216 4217 4218 4219 4220 4221
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%159
S
SunAhong1993 已提交
4222 4223
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
4224
    # 处理输入2,即%723
S
SunAhong1993 已提交
4225 4226
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
    layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
4227
    # 处理输入1,即%135
S
SunAhong1993 已提交
4228
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237
    input_type = list(node.inputs())[0].type()
    if "[]" in str(input_type):
        layer_inputs["num_or_sections"] = inputs_name[1]
    else:
        layer_attrs["num_or_sections"] = 1
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4238
        "paddle.split",
S
SunAhong1993 已提交
4239 4240
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4241
        scope_name=scope_name,
S
SunAhong1993 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
        **layer_attrs)
    return current_inputs, current_outputs


def aten_transpose(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。

    TorchScript示例:
        %715 : Tensor = aten::transpose(%x.21, %704, %705)
        参数含义:
        %715 (Tensor): 输出,转置后的矩阵。
        %x.21 (Tensor): 需要转置的Tensor。
        %704 (int): 转置的维度1。
        %705 (int): 转置的维度2。
    """
S
SunAhong1993 已提交
4257
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4258 4259 4260 4261 4262 4263 4264 4265
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.21
S
SunAhong1993 已提交
4266
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4267 4268
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%704
S
SunAhong1993 已提交
4269
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
4270 4271
    dim1 = inputs_name[1]
    # 处理输入2,即%705
S
SunAhong1993 已提交
4272
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
S
SunAhong1993 已提交
4273 4274
    dim2 = inputs_name[2]
    # 获取当前节点输入的list
S
SunAhong1993 已提交
4275
    current_inputs = list(layer_inputs.values())  
S
SunAhong1993 已提交
4276
    graph.add_layer(
S
SunAhong1993 已提交
4277
        "prim.shape",
S
SunAhong1993 已提交
4278
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
4279 4280
        outputs=[output_name + "_shape"],
        scope_name=scope_name)
S
SunAhong1993 已提交
4281 4282 4283 4284
    current_outputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len",
        inputs={"input": output_name + "_shape"},
S
SunAhong1993 已提交
4285 4286
        outputs=[output_name + "_len"],
        scope_name=scope_name)
S
SunAhong1993 已提交
4287 4288 4289 4290 4291
    current_outputs.append(output_name + "_len")
    current_inputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len2list",
        inputs={"len": output_name + "_len"},
S
SunAhong1993 已提交
4292 4293
        outputs=[output_name + "_list"],
        scope_name=scope_name)
S
SunAhong1993 已提交
4294 4295 4296 4297 4298 4299
    current_outputs.append(output_name + "_list")
    current_inputs.append(output_name + "_len")
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim1},
S
SunAhong1993 已提交
4300 4301
        outputs=[dim1 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
4302 4303 4304 4305
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim2},
S
SunAhong1993 已提交
4306 4307
        outputs=[dim2 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
4308 4309 4310 4311 4312 4313 4314
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim1 + "_new",
            "item": dim2 + "_new"
        },
S
SunAhong1993 已提交
4315 4316
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
4317 4318 4319 4320 4321 4322 4323
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim2 + "_new",
            "item": dim1 + "_new"
        },
S
SunAhong1993 已提交
4324 4325
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
4326
    graph.add_layer(
S
SunAhong1993 已提交
4327
        "paddle.transpose",
S
SunAhong1993 已提交
4328 4329
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4330
        scope_name=scope_name,
S
SunAhong1993 已提交
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
        perm=output_name + "_list")
    return current_inputs, current_outputs


def aten_to(mapper, graph, node):
    """ 构造类型转换的PaddleLayer。

    TorchScript示例:
        %30 : Tensor = aten::to(%extended_attention_mask.1, %12, %5, %5, %4)
        参数含义:
        %30 (Tensor): 转换后的Tensor。
        %extended_attention_mask.1 (Tensor): 需要转换的Tensor。
        %12 (int): 转换的类型。
    """
S
SunAhong1993 已提交
4345
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4346 4347 4348 4349 4350 4351 4352 4353
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
4354
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if len(inputs_name) == 6:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
S
SunAhong1993 已提交
4365
        "paddle.cast",
S
SunAhong1993 已提交
4366 4367
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4368
        scope_name=scope_name,
S
SunAhong1993 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
        **layer_attrs)
    return current_inputs, current_outputs


def aten_type_as(mapper, graph, node):
    """ 构造转换Tensor类型的PaddleLayer。

    TorchScript示例:
        %57 : Tensor = aten::type_as(%56, %mask.1)
        参数含义:
        %57 (Tensor): 输出,改变类型后的Tensor。
        %56 (Tensor): 需要改变类型的Tensor。
        %mask.1 (Tensor): 转换成与该Tensor相一致的类型。
    """
S
SunAhong1993 已提交
4383
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4384 4385 4386 4387 4388 4389 4390
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%56
S
SunAhong1993 已提交
4391
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4392 4393 4394 4395
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
4396
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
4397 4398 4399
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
4400 4401
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
4402 4403 4404 4405
    layer_inputs["dtype"] = inputs_name[1] + "_type"
    current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
4406
        "paddle.cast", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
    return current_inputs, current_outputs


def aten_unsqueeze(mapper, graph, node):
    """ 构造插入维度的PaddleLayer。

    TorchScript示例:
        %13 : Tensor = aten::unsqueeze(%12, %7)
        参数含义:
        %13 (Tensor): 输出,插入维度后的Tensor。
        %12 (Tensor): 需要插入维度的Tensor。
        %7 (int): 维度。
    """
S
SunAhong1993 已提交
4420
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4421 4422 4423 4424 4425 4426 4427 4428
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
4429
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4430 4431 4432 4433 4434 4435 4436 4437
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4438
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4439 4440 4441
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
4442
        "paddle.unsqueeze",
S
SunAhong1993 已提交
4443 4444
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4445
        scope_name=scope_name,
S
SunAhong1993 已提交
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
        **layer_attrs)
    return current_inputs, current_outputs


def aten_upsample_bilinear2d(mapper, graph, node):
    """ 构造使用bilinear上采样的PaddleLayer。

    TorchScript示例:
        %4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
        %4995 (float): 高度的乘数因子。
        %4995 (float): 宽度的乘数因子。
    """
S
SunAhong1993 已提交
4463
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4464 4465 4466 4467 4468 4469 4470 4471
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
4472
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4473 4474 4475 4476 4477 4478 4479 4480
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4481
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4482 4483 4484 4485 4486 4487
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
S
SunAhong1993 已提交
4488
            scope_name=scope_name,
S
SunAhong1993 已提交
4489
            cls="paddle.fluid.Variable")
S
SunAhong1993 已提交
4490
        # TODO(syf): paddle.Variable
S
SunAhong1993 已提交
4491 4492
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
S
SunAhong1993 已提交
4493 4494
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
S
SunAhong1993 已提交
4495
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
4496
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
4497 4498 4499
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
4500 4501
            outputs=[inputs_name[1]],
            scope_name=scope_name)
S
SunAhong1993 已提交
4502
        if_layer.add_block(block)
S
SunAhong1993 已提交
4503
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
4504 4505 4506 4507 4508 4509 4510
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
    # 处理输入2,即%5421
    if inputs_name[2] in mapper.attrs:
        layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
4511
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4512 4513
        layer_inputs["align_corners"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
S
fix2  
SunAhong1993 已提交
4514 4515 4516 4517
    if "size" in layer_attrs and layer_attrs["size"] is None:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
4518
    layer_attrs["align_mode"] = 0
C
channingss 已提交
4519
    layer_attrs["mode"] = string("bilinear")
S
SunAhong1993 已提交
4520 4521 4522 4523
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4524
        scope_name=scope_name,
S
SunAhong1993 已提交
4525 4526 4527
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
def aten_upsample_nearest2d(mapper, graph, node):
    """ 构造使用nearest上采样的PaddleLayer。

    TorchScript示例:
        %4997 : Tensor = aten::upsample_nearest2d(%x.13, %4963, %5421, %4995)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %4995 (float): 高度的乘数因子。
        %4995 (float): 宽度的乘数因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
            scope_name=scope_name,
            cls="paddle.fluid.Variable")
        # TODO(syf): paddle.Variable
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1]],
            scope_name=scope_name)
        if_layer.add_block(block)
        block = PaddleGraph(source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
S
fix  
SunAhong1993 已提交
4583 4584 4585 4586
    if "size" in layer_attrs and layer_attrs["size"] is None:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
    layer_attrs["align_mode"] = 0
    layer_attrs["mode"] = string("nearest")
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
4597

S
SunAhong1993 已提交
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
def aten_values(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %5 : Float(1, *, 1024, 2048)[] = aten::values(%1)
        参数含义:
        %5 (list): 输出,由字典获取的values的list。
        %1 (dict): 字典。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.dict2values", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
def aten_view(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。

    TorchScript示例:
        %input.152 : Tensor = aten::view(%x.20, %430)
        参数含义:
        %input.152 (Tensor): 输出,view后的Tensor。
        %x.20 (Tensor): 需要view的Tensor。
        %430 (list): 形状大小组成的list。

    【注意】view 函数只能用于contiguous后的Tensor上,
          也就是只能用于内存中连续存储的Tensor。
          如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
          此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
          reshape则不需要依赖目标Tensor是否在内存中是连续的。
    """
S
SunAhong1993 已提交
4640
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4641 4642 4643 4644 4645 4646 4647 4648
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.20
S
SunAhong1993 已提交
4649
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4650 4651 4652 4653 4654 4655 4656 4657
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%430
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4658
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4659 4660 4661
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
4662
        "paddle.reshape",
S
SunAhong1993 已提交
4663 4664
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4665
        scope_name=scope_name,
S
SunAhong1993 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
        **layer_attrs)
    return current_inputs, current_outputs


def aten_warn(mapper, graph, node):
    """ 构造warning的PaddleLayer。

    TorchScript示例:
        = aten::warn(%3, %2)
        参数含义:
        %3 (str): warning的提示字符串。
        %2 (int): warning的stacklevel。
    """
S
SunAhong1993 已提交
4679
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4680 4681 4682 4683 4684 4685 4686 4687
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3
S
SunAhong1993 已提交
4688
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4689 4690 4691 4692 4693 4694 4695 4696
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2
    if inputs_name[1] in mapper.attrs:
        layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4697
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4698 4699 4700 4701 4702 4703 4704
        layer_inputs["stacklevel"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "prim.warnings",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4705
        scope_name=scope_name,
S
SunAhong1993 已提交
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
        **layer_attrs)
    return current_inputs, current_outputs


def aten_where(mapper, graph, node):
    """ 构造返回一个根据输入condition, 选择x或y的元素组成的多维Tensor的PaddleLayer,该节点实现out = x + y。

    TorchScript示例:
        %input.4 : Tensor = aten::where(%209, %w0.2, %210)
        参数含义:
        %input.4 (Tensor): 选择的结果。
        %209 (Tensor): 条件。
        %w0.2 (Tensor): 输入数值 x。
        %210 (Tensor): 输入数值 y。
    """
S
SunAhong1993 已提交
4721
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4722 4723 4724 4725 4726 4727 4728
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%209
S
SunAhong1993 已提交
4729
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4730 4731
    layer_inputs["condition"] = inputs_name[0]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
4732
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
S
SunAhong1993 已提交
4733 4734
    layer_inputs["x"] = inputs_name[1]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
4735
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs, scope_name)
S
SunAhong1993 已提交
4736 4737 4738 4739
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4740
    graph.add_layer("paddle.where", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
    return current_inputs, current_outputs


def aten_zeros(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。

    TorchScript示例:
        %input.49 : Tensor = aten::zeros(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
4757
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
4771
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4781
        scope_name=scope_name,
S
SunAhong1993 已提交
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
        **layer_attrs)
    return current_inputs, current_outputs


def aten_zeros_like(mapper, graph, node):
    """ 构造创建与输入Tensor形状一致的、数据类型且值全为0的Tensor的PaddleLayer。

    TorchScript示例:
        %782 : Tensor = aten::zeros_like(%n.2, %655, %670, %662, %671, %672)
        参数含义:
        %782 (Tensor): 输出,全0的Tensor。
        %n.2 (Tensor): 标准Tensor。
        %655 (int): 类型dtype。
        %670 (int): layout。
        %662 (Device): 设备。
        %671 (bool): 是否计算梯度。
        %672 (memory_format): 存储类型。
    """
S
SunAhong1993 已提交
4800
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4801 4802 4803 4804 4805 4806 4807 4808
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.2
S
SunAhong1993 已提交
4809
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%655,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4820
        scope_name=scope_name,
S
SunAhong1993 已提交
4821 4822
        **layer_attrs)
    return current_inputs, current_outputs