pattern_matcher.py 14.2 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.program import PaddleGraph


class PatternMatcher(object):
    def __init__(self, pattern):
        self.pattern = pattern
        # matches的每个match是按照拓扑排序组成layer的dict
        self.matches = list()

    def operate(self, graph, match_kind="topo"):
        if match_kind == "topo":
            self.detect_patterns_by_topo(graph)
        elif match_kind == "edge":
            self.detect_patterns_by_edge(graph)
        self.remove_overlapped_match()
        return self.matches

    def detect_patterns_by_topo(self, graph):
        """ 找到与模式匹配的子图,
            并将子图的id以拓扑排序存放到subgraph_id2layers。
        """

        def get_subgraph(pattern, graph, start_index, is_subblock=False):
            pattern_index = 0
            pattern_id2layers = pattern.get_global_layers()
            pattern_ids = list(pattern_id2layers.keys())
            subgraph_id2layers = dict()
            graph_layers = dict(list(graph.layers.items())[start_index:])
            for layer_id, layer in graph_layers.items():
                pattern_layer = pattern.layers[list(pattern.layers.keys())[
                    pattern_index]]
                if layer.kernel == pattern_layer.kernel:
                    subgraph_id2layers[layer_id] = layer
                    pattern_layer_id = pattern_layer.id
                    # 判断输入连接是否一致
                    if layer_id in graph.edges_in:
                        if pattern_layer_id not in pattern.edges_in:
                            if pattern_index == 0 or is_subblock:
                                return False
                            else:
                                subgraph_id2layers.pop(layer_id)
                                continue
                        else:
                            if len(graph.edges_in[layer_id]) != len(
                                    pattern.edges_in[pattern_layer_id]):
                                if pattern_index == 0 or is_subblock:
                                    return False
                                else:
                                    subgraph_id2layers.pop(layer_id)
                                    continue
                        layer_in = graph.edges_in[layer_id]
                        pattern_layer_in = pattern.edges_in[pattern_layer_id]
                        for i in range(len(layer_in)):
                            layer_id_in = layer_in[i]
                            pattern_layer_id_in = pattern_layer_in[i]
                            if pattern_layer_id_in != -1:
                                subgraph_ids = list(subgraph_id2layers.keys())
                                if layer_id_in not in subgraph_ids:
                                    return False
                                if pattern_ids.index(pattern_layer_id_in) == \
                                subgraph_ids.index(layer_id_in):
                                    # 判断pattern输入在pattern_ids的索引
                                    # 和graph输入在subgraph_ids的索引一致
                                    continue
                                if pattern_index == 0 or is_subblock:
                                    return False
                                else:
                                    subgraph_id2layers.pop(layer_id)
                                    continue
                    # 判断subgraph中的节点是否被外部图使用到(如若被使用到则无效)
                    if layer_id in graph.edges_out:
                        if pattern_layer_id not in pattern.edges_out:
                            if not set(pattern_layer.outputs).issubset(
                                    pattern.outputs):
                                # 若pattern当前layer的输出是pattern的输出,则是正确的
                                if pattern_index == 0 or is_subblock:
                                    return False
                                else:
                                    subgraph_id2layers.pop(layer_id)
                                    continue
                        else:
                            if len(graph.edges_out[layer_id]) != len(
                                    pattern.edges_out[pattern_layer_id]):
                                # 如果在每个节点edges_in相同的情况下,edges_out数目相同则说明无节点在subgraph外被用到
                                if not set(pattern_layer.outputs).issubset(
                                        pattern.outputs):
                                    # 若pattern当前layer的输出是pattern的输出,则是正确的
                                    if pattern_index == 0 or is_subblock:
                                        return False
                                    else:
                                        subgraph_id2layers.pop(layer_id)
                                        continue
                    # 当为控制流时的处理
                    if layer.kernel == "prim.if" or layer.kernel == "prim.loop":
                        if len(pattern_layer.blocks) != len(layer.blocks):
                            if pattern_index == 0 or is_subblock:
                                return False
                            else:
                                subgraph_id2layers.pop(layer_id)
                                continue
                        is_subblock_match = True
                        for i, b in enumerate(pattern_layer.blocks):
                            match_info = get_subgraph(
                                pattern_layer.blocks[i],
                                layer.blocks[i],
                                0,
                                is_subblock=True)
                            if match_info is not False:
                                subgraph_id2layers.update(match_info)
                            else:
                                is_subblock_match = False
                                break
                        if not is_subblock_match:
                            if pattern_index == 0 or is_subblock:
                                return False
                            else:
                                index = list(subgraph_id2layers.keys()).index(
                                    layer_id)
                                for key in list(subgraph_id2layers.keys())[
                                        index:]:
                                    subgraph_id2layers.pop(key)
                                continue
                    pattern_index += 1
                    if pattern_index == len(pattern.layers):
                        return subgraph_id2layers
                else:
                    if pattern_index == 0 or is_subblock:
                        return False
                    else:
                        continue
            if pattern_index == len(pattern.layers):
                return subgraph_id2layers
            return False

        for i, (layer_id, layer) in enumerate(graph.layers.items()):
            match_info = get_subgraph(self.pattern, graph, i)
            if match_info:
                self.matches.append(match_info)
            for j, block in enumerate(layer.blocks):
                if len(block.layers) > 0:
                    self.detect_patterns_by_topo(layer.blocks[j])

    def detect_patterns_by_edge(self, graph, ignore_list_inputs=True):
        """当遇见顺序没有强制规定的pattern时使用该方式
        """

        def get_subgraph(pattern, graph, start_index):
            pattern_id2layers = pattern.get_global_layers()
            pattern_ids = list(pattern_id2layers.keys())
            pattern_layer_id = pattern_ids[0]
            subgraph_id2layers = dict()
            graph_layers = dict(list(graph.layers.items())[start_index:])
            layer_id = list(graph_layers.keys())[0]

            def update(layer_id, pattern_layer_id):
                layer = graph_layers[layer_id]
                pattern_layer = pattern_id2layers[pattern_layer_id]
                if layer.kernel != pattern_layer.kernel:
                    return False
                subgraph_id2layers[layer_id] = layer
                for i, pattern_layer_id_in in enumerate(pattern.edges_in[
                        pattern_layer_id]):
                    if pattern_layer_id_in == -1 or ignore_list_inputs:
                        continue
                    layer_id_in = graph.edges_in[layer_id][i]
                    subgraph_ids = list(subgraph_id2layers.keys())
                    if layer_id_in not in subgraph_ids:
                        return False
                if pattern.edges_out.get(pattern_layer_id, 0) != 0:
                    if len(pattern.edges_out[pattern_layer_id]) != \
                            len(graph.edges_out[layer_id]):
                        return False
                    for i, pattern_layer_id_out in enumerate(pattern.edges_out[
                            pattern_layer_id]):
                        if pattern_layer_id_out in pattern_ids:
                            new_layer_id_out = graph.edges_out[layer_id][i]
                            for j, new_new_layer_id_in in enumerate(
                                    graph.edges_in[new_layer_id_out]):
                                if new_new_layer_id_in not in subgraph_id2layers:
                                    if ignore_list_inputs:
                                        continue
                                    new_new_pattern_layer_id_in = pattern.edges_in[
                                        pattern_layer_id_out][j]
                                    if new_new_pattern_layer_id_in == -1:
                                        continue
                                    update(new_new_layer_id_in,
                                           new_new_pattern_layer_id_in)
                            update(new_layer_id_out, pattern_layer_id_out)

            while len(subgraph_id2layers) != len(pattern_id2layers):
                out = update(layer_id, pattern_layer_id)
                if out == False:
                    return False
                else:
                    if len(subgraph_id2layers) == len(pattern_id2layers):
                        return subgraph_id2layers
                    else:
                        return False

        for i, (layer_id, layer) in enumerate(graph.layers.items()):
            match_info = get_subgraph(self.pattern, graph, i)
            if match_info:
                self.matches.append(match_info)
            for j, block in enumerate(layer.blocks):
                if len(block.layers) > 0:
                    self.detect_patterns_by_edge(layer.blocks[j])

    def remove_overlapped_match(self):
        """ 如果2个子图有重叠,只取前一个子图。
        """
        match_ids = []
        for i, match in enumerate(self.matches):
            is_overlapped = False
            for id in match.keys():
                if id in match_ids:
                    self.matches.pop(i)
                    is_overlapped = True
                    break
            if not is_overlapped:
                match_ids.extend(list(match.keys()))


def get_subgraph(prefix_layer_id, suffix_layer_id, graph):
    """ 根据prefix_layer_id和suffix_layer_id获取需要子图。
        Args:
            prefix_layer_id (str): 起初为一个空字符串,之后为suffix_layer_id分割出来的前缀。
            suffix_layer_id (str): 起初为以一个layer的id,之后将分割部分给prefix_layer_id;例如”57.0.1“;
            graph (x2paddle.core.program.PaddleGraph): 需要进行pass的子图。
    """
    id_part = suffix_layer_id.split(".")
    if len(id_part) == 1:
        return graph
    if prefix_layer_id == "":
        layer_id = id_part[0]
        prefix_layer_id += ".".join(id_part[:2])
    else:
        layer_id = prefix_layer_id + "." + id_part[0]
        prefix_layer_id += ("." + ".".join(id_part[:2]))
    subgraph = graph.layers[layer_id].blocks[int(id_part[1])]
    suffix_layer_id = ".".join(id_part[2:])
    return get_subgraph(prefix_layer_id, suffix_layer_id, subgraph)


class FuseBase(object):
    def __init__(self, graph_type):
        self.pattern = PaddleGraph(graph_type=graph_type)

    def operate(self, graph, match_kind="topo"):
        parameters = graph.parameters
        self.build_pattern()
        self.perform_pattern_matcher(graph, match_kind)
        for match in self.matches:
            first_layer_id = list(match.keys())[0]
            subgraph = get_subgraph("", first_layer_id, graph)
            self.insert_new_layer(subgraph, parameters, match)
        self.delete_inter_layer(graph)
        graph.build()

    def perform_pattern_matcher(self, graph, match_kind="topo"):
        """ 执行模式匹配,找到匹配的子图。
        """
        pattern_matcher = PatternMatcher(self.pattern)
        self.matches = pattern_matcher.operate(graph, match_kind)

    def delete_inter_layer(self, graph):
        """ 删除不需要的中间layer及其对应参数。
        """
        for match in self.matches:
            first_layer_id = list(match.keys())[0]
            subgraph = get_subgraph("", first_layer_id, graph)
            for layer_id, layer in match.items():
                if layer.kernel == "fluid.dygraph.base.to_variable" and \
                layer.attrs["value"].startswith("params["):
                    param_name = layer.attrs["value"][8:-2]
                    if param_name in graph.parameters:
                        graph.parameters.pop(param_name)
                if layer_id in subgraph.layers:
                    # layer_id可能是属于子图的,此时删除父layer,即删除整个子图
                    subgraph.layers.pop(layer_id)