tf_decoder.py 17.8 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
J
jiangjiajun 已提交
16 17
from x2paddle.core.fluid_code import FluidCode
from tensorflow.python.framework import tensor_util
J
jiangjiajun 已提交
18
from tensorflow.core.framework import attr_value_pb2
J
jiangjiajun 已提交
19
import tensorflow as tf
J
jiangjiajun 已提交
20
import copy as cp
J
jiangjiajun 已提交
21
import numpy
J
jiangjiajun 已提交
22
import sys
J
jiangjiajun 已提交
23

24

J
jiangjiajun 已提交
25
class TFGraphNode(GraphNode):
J
jiangjiajun 已提交
26
    def __init__(self, layer, layer_name=None, data_format="NHWC"):
J
jiangjiajun 已提交
27
        if layer_name is None:
J
jiangjiajun 已提交
28 29 30
            super(TFGraphNode, self).__init__(
                layer,
                layer.name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
31
        else:
J
jiangjiajun 已提交
32 33 34
            super(TFGraphNode, self).__init__(
                layer,
                layer_name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
35

J
jiangjiajun 已提交
36
        self.layer_type = layer.op
J
jiangjiajun 已提交
37 38
        self.tf_data_format = data_format
        self.pd_data_format = "NCHW"
J
jiangjiajun 已提交
39
        self.fluid_code = FluidCode()
J
jiangjiajun 已提交
40

J
jiangjiajun 已提交
41 42 43 44 45 46 47
        self.dtype_map = {
            1: "float32",
            3: "int32",
            4: "uint8",
            9: "int64",
            10: "bool"
        }
48 49 50 51 52 53 54 55 56 57 58 59

    @property
    def out_shapes(self):
        values = self.layer.attr["_output_shapes"].list.shape
        out_shapes = list()
        for value in values:
            shape = [dim.size for dim in value.dim]
            out_shapes.append(shape)
        return out_shapes

    @property
    def dtype(self):
J
jiangjiajun 已提交
60
        keys = ['dtype', 'Tidx', 'T', 'DstT']
61 62 63 64
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
65 66 67 68
        if dtype not in self.dtype_map:
            raise Exception("Dtype[{}] not in dtype_map".format(dtype))
        return self.dtype_map[dtype]

J
jiangjiajun 已提交
69 70 71 72 73 74 75 76 77
    @property
    def raw_dtype(self):
        keys = ['dtype', 'Tidx', 'T', 'DstT']
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
        return dtype

J
jiangjiajun 已提交
78 79 80 81 82 83 84 85
    @property
    def value(self):
        assert self.layer_type == "Const", "Only Const node has value."

        attr = self.layer.attr['value']
        field = getattr(attr, attr.WhichOneof('value'))
        return tensor_util.MakeNdarray(field)

J
jiangjiajun 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    def get_attr(self, name):
        if name not in self.layer.attr:
            return None
        attr = self.layer.attr[name]
        field = attr.WhichOneof('value')
        value = getattr(attr, field) if field else None

        if isinstance(value, attr_value_pb2.AttrValue.ListValue):
            result = list(value.ListFields()[0][1])
            for i in range(len(result)):
                if isinstance(result[i], int):
                    result[i] = int(result[i])
                try:
                    if isinstance(result[i], long):
                        result[i] = int(result[i])
                except:
                    pass
            return result
        else:
            return value

J
jiangjiajun 已提交
107 108

class TFGraph(Graph):
J
jiangjiajun 已提交
109
    def __init__(self, model, data_format="NHWC"):
J
jiangjiajun 已提交
110
        super(TFGraph, self).__init__(model)
J
jiangjiajun 已提交
111
        self.identity_map = dict()
J
jiangjiajun 已提交
112
        self.multi_out_ops = ['Split', 'SplitV']
J
jiangjiajun 已提交
113
        self.tf_data_format = data_format
J
jiangjiajun 已提交
114 115 116

    def build(self):
        for layer in self.model.node:
J
jiangjiajun 已提交
117
            self.node_map[layer.name.replace('/', '_').replace(
J
jiangjiajun 已提交
118
                '-', '_')] = TFGraphNode(layer, data_format=self.tf_data_format)
J
jiangjiajun 已提交
119

J
jiangjiajun 已提交
120 121
        for layer_name, node in self.node_map.items():
            for in_node in node.layer.input:
J
jiangjiajun 已提交
122 123 124
                in_node = in_node.replace('/',
                                          '_').replace('-',
                                                       '_').replace('^', '')
J
jiangjiajun 已提交
125 126
                if in_node not in self.node_map:
                    if in_node.strip().split(':')[0] in self.node_map:
J
jiangjiajun 已提交
127
                        self.connect(in_node.strip().split(':')[0], layer_name)
J
jiangjiajun 已提交
128
                    else:
129 130 131
                        raise Exception(
                            'input[{}] of node[{}] does not exist in node_map'.
                            format(in_node, layer_name))
J
jiangjiajun 已提交
132 133 134
                else:
                    self.connect(in_node, layer_name)

135
        super(TFGraph, self).build()
J
jiangjiajun 已提交
136

J
jiangjiajun 已提交
137 138 139
        # tensorflow graph optimize
        self._remove_isolated_node()
        self._remove_identity_node()
J
jiangjiajun 已提交
140
        self._remove_cast_node()
J
jiangjiajun 已提交
141 142 143

    def get_node(self, node_name, copy=False):
        items = node_name.strip().split(':')
J
jiangjiajun 已提交
144
        items[0] = items[0].replace('/', '_').replace('-', '_')
J
jiangjiajun 已提交
145 146 147
        if items[0] in self.identity_map:
            items[0] = self.identity_map[items[0]]
        new_node_name = ":".join(items)
J
jiangjiajun 已提交
148
        node = super(TFGraph, self).get_node(new_node_name, copy)
J
jiangjiajun 已提交
149 150
        if node is None:
            return None
J
jiangjiajun 已提交
151 152 153
        if node.layer_type == "Switch":
            if hasattr(node, 'index'):
                del node.index
J
jiangjiajun 已提交
154 155 156
        if len(items) == 1 and node.layer_type in self.multi_out_ops:
            node.index = 0
        return node
J
jiangjiajun 已提交
157

J
jiangjiajun 已提交
158 159 160 161 162
    def remove_node(self, node_name):
        if node_name not in self.node_map:
            raise Exception("Node[{}] not in graph".format(node_name))
        inputs = self.node_map[node_name].inputs
        outputs = self.node_map[node_name].outputs
163
        #        assert len(inputs) == 1
J
jiangjiajun 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177
        input_node = self.node_map[inputs[0]]
        idx = input_node.outputs.index(node_name)
        del input_node.outputs[idx]
        for output in outputs:
            node = self.node_map[output]
            idx = node.inputs.index(node_name)
            node.inputs[idx] = inputs[0]
            input_node.outputs.append(output)

        del self.node_map[node_name]

        idx = self.topo_sort.index(node_name)
        del self.topo_sort[idx]

J
jiangjiajun 已提交
178 179 180 181
    def _remove_isolated_node(self):
        # delete isolated nodes
        isolated_nodes = list()
        for node_name in self.node_map.keys():
J
jiangjiajun 已提交
182
            if len(self.get_node(node_name).inputs) == 0 and len(
J
jiangjiajun 已提交
183 184 185
                    self.get_node(node_name).outputs) == 0:
                isolated_nodes.append(node_name)

J
jiangjiajun 已提交
186
        for node_name in isolated_nodes:
J
jiangjiajun 已提交
187 188 189 190 191 192 193 194 195
            del self.node_map[node_name]
            if node_name in self.input_nodes:
                idx = self.input_nodes.index(node_name)
                del self.input_nodes[idx]
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                del self.output_nodes[idx]
            idx = self.topo_sort.index(node_name)
            del self.topo_sort[idx]
J
jiangjiajun 已提交
196 197

    def _remove_identity_node(self):
J
jiangjiajun 已提交
198 199 200 201
        identity_ops = [
            'Identity', 'StopGradient', 'Switch', 'Merge',
            'PlaceholderWithDefault'
        ]
J
jiangjiajun 已提交
202 203
        identity_node = list()
        for node_name, node in self.node_map.items():
J
jiangjiajun 已提交
204
            if node.layer_type in identity_ops:
J
jiangjiajun 已提交
205 206 207 208 209
                identity_node.append(node_name)

        for node_name in identity_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
J
jiangjiajun 已提交
210
            self.remove_node(node_name)
J
jiangjiajun 已提交
211 212 213

            self.identity_map[node_name] = input_node.layer_name

J
jiangjiajun 已提交
214 215 216 217
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _remove_cast_node(self):
        cast_node = list()
        for node_name, node in self.node_map.items():
            if node.layer_type == "Cast":
                input = self.get_node(node.inputs[0])
                if input.layer_type != "Placeholder" or len(input.outputs) != 1:
                    continue
                cast_node.append(node_name)

        for node_name in cast_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
            input_node.layer.attr["dtype"].type = node.raw_dtype
            self.remove_node(node_name)

            self.identity_map[node_name] = input_node.layer_name

            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
239 240 241 242 243 244 245 246 247 248 249
    def data_format_propagation(self, node):
        current_node = self.node_map[node.layer_name]
        current_node = node.tf_data_format
        outputs = current_node.outputs
        if len(outputs) == 0:
            return
        for out in outputs:
            next_node = self.node_map[out]
            next_node.tf_data_format = node.tf_data_format
            self.data_format_propagation(next_node)

J
jiangjiajun 已提交
250

J
jiangjiajun 已提交
251
class TFDecoder(object):
252
    def __init__(self, pb_model, data_format="NHWC", define_input_shape=False):
253 254 255 256
        try:
            self.sess = tf.compat.v1.Session()
        except:
            self.sess = tf.Session()
J
jiangjiajun 已提交
257
        self.input_info = dict()
258
        self.define_input_shape = define_input_shape
259 260 261 262 263
        with open(pb_model, 'rb') as f:
            try:
                graph_def = tf.compat.v1.GraphDef()
            except:
                graph_def = tf.GraphDef()
J
jiangjiajun 已提交
264
            graph_def.ParseFromString(f.read())
J
jiangjiajun 已提交
265
            input_map = self._check_input_shape(graph_def)
J
jiangjiajun 已提交
266
            self._fix_output_shape(graph_def)
J
jiangjiajun 已提交
267
            self.sess.graph.as_default()
J
jiangjiajun 已提交
268
            tf.import_graph_def(graph_def, name='', input_map=input_map)
269

270 271 272 273 274
        try:
            initializer = tf.compat.v1.global_variables_initializer()
        except:
            initializer = tf.global_variables_initializer()
        self.sess.run(initializer)
J
jiangjiajun 已提交
275

J
jiangjiajun 已提交
276
        self.tf_graph = TFGraph(
J
jiangjiajun 已提交
277
            self.sess.graph._as_graph_def(add_shapes=True)[0], data_format)
J
jiangjiajun 已提交
278
        self.tf_graph.build()
J
jiangjiajun 已提交
279 280 281 282 283 284

    def _fix_output_shape(self, graph):
        for i in range(len(graph.node)):
            node = graph.node[i]
            if node.op == "swish_f32":
                graph.node[i].attr['_disable_call_shape_inference'].b = False
J
jiangjiajun 已提交
285 286

    def _check_input_shape(self, graph_def):
J
jiangjiajun 已提交
287
        numpy.random.seed(13)
J
jiangjiajun 已提交
288 289 290 291 292 293
        graph_def = cp.deepcopy(graph_def)
        input_map = dict()
        for layer in graph_def.node:
            if layer.op != "Placeholder":
                continue
            graph_node = TFGraphNode(layer)
294
            dtype = graph_node.layer.attr['dtype'].type
J
jiangjiajun 已提交
295 296

            need_define_shape = 0
297 298 299 300 301
            if self.define_input_shape:
                need_define_shape = 3
            elif graph_node.layer.attr[
                    'shape'].shape.unknown_rank or not graph_node.get_attr(
                        "shape"):
J
jiangjiajun 已提交
302 303 304 305 306 307 308 309
                need_define_shape = 1
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                if shape.count(-1) > 1:
                    need_define_shape = 2

            if need_define_shape > 0:
310 311 312 313
                shape = None
                if graph_node.get_attr("shape"):
                    value = value = graph_node.layer.attr["shape"].shape
                    shape = [dim.size for dim in value.dim]
J
jiangjiajun 已提交
314
                if need_define_shape == 1:
J
jiangjiajun 已提交
315 316
                    print("Unknown shape for input tensor[tensor name: \"{}\"]".
                          format(layer.name))
317
                elif need_define_shape == 2:
J
jiangjiajun 已提交
318
                    print(
J
jiangjiajun 已提交
319 320
                        "\nShape[now is {}] for input tensor[tensor name: \"{}\"] not support yet"
                        .format(shape, layer.name))
321 322 323 324
                else:
                    print(
                        "Define shape[now is {}] for input tensor[tensor name: \"{}\']"
                        .format(shape, layer.name))
J
jiangjiajun 已提交
325
                print(
J
jiangjiajun 已提交
326 327 328 329
                    "Use your keyboard type the shape of input tensor below :)")

                right_shape_been_input = False
                while not right_shape_been_input:
M
mamingjie-China 已提交
330 331 332 333 334
                    try:
                        shape = raw_input(
                            "Shape of Input(e.g. None,224,224,3): ")
                    except:
                        shape = input("Shape of Input(e.g. None,224,224,3): ")
J
jiangjiajun 已提交
335
                    if shape.count("None") > 1:
J
jiangjiajun 已提交
336
                        print("Only 1 dimension can be None, type again:)")
J
jiangjiajun 已提交
337 338 339
                    else:
                        right_shape_been_input = True

J
jiangjiajun 已提交
340 341 342 343
                shape = [
                    None if dim == "None" else int(dim)
                    for dim in shape.strip().split(',')
                ]
J
jiangjiajun 已提交
344
                assert shape.count(None) <= 1, "Only one dimension can be None"
345 346 347 348 349 350 351 352 353 354 355
                try:
                    x2paddle_input = tf.compat.v1.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
                except:
                    x2paddle_input = tf.placeholder(dtype=dtype,
                                                    shape=shape,
                                                    name="x2paddle_{}".format(
                                                        layer.name))

J
jiangjiajun 已提交
356
                input_map["{}:0".format(layer.name)] = x2paddle_input
357 358
                if shape.count(None) > 0:
                    shape[shape.index(None)] = -1
J
jiangjiajun 已提交
359 360 361 362 363 364 365
                self.input_info["x2paddle_{}".format(layer.name)] = (shape,
                                                                     dtype)
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                self.input_info[graph_node.layer_name] = (shape, dtype)

J
jiangjiajun 已提交
366
        return input_map
J
jiangjiajun 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

    # trick method
    # should be removed after PaddlePaddle V1.6 been released
    def infer_tensor(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        for input_name, info in self.input_info.items():
            (shape, dtype) = cp.deepcopy(info)
            input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0")
            if shape.count(-1) > 0:
                shape[shape.index(-1)] = 2
            feed[input_tensor] = numpy.random.random_sample(shape)
        output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
        return self.sess.run([output_tensor], feed)[0]

    def infer_shape_tensor(self, graph_node, out_shape=None):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        results = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            results.append(self.sess.run([output_tensor], feed)[0].flatten())

        compare01 = (results[0] == results[1])
        compare12 = (results[1] == results[2])

        if compare01.all() and compare12.all():
            return results[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            results[0][index[0]] = -1

            index = numpy.argwhere(results[0] < 0).flatten()
            if index.shape[0] > 2:
                print("Warning: More than two dimension less than zero")
            if index.shape[0] == 2 and out_shape is not None:
                if out_shape[index[1]] > 0:
                    results[0][index[1]] = out_shape[index[1]]
                else:
                    results[0][index[0]] = out_shape[index[0]]
            return results[0].tolist()
        else:
            raise Exception("Couldn't infer a stable shape shape tensor value")
J
jiangjiajun 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

    def infer_tensor_shape(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        shapes = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            shape = self.sess.run([output_tensor], feed)[0].shape
            shapes.append(numpy.array(shape))

        compare01 = (shapes[0] == shapes[1])
        compare12 = (shapes[1] == shapes[2])

        if compare01.all() and compare12.all():
            return shape[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            if index[0] != 0:
                raise Exception("Batch size not in the first dimension")
            shapes[0][0] = -1
            return shapes[0].tolist()