tf_op_mapper.py 45.6 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.util import *
J
jiangjiajun 已提交
18 19 20
from x2paddle import program
import traceback
import math
J
jiangjiajun 已提交
21
import inspect
J
jiangjiajun 已提交
22
import numpy
J
jiangjiajun 已提交
23
import sys
24

J
jiangjiajun 已提交
25 26 27 28 29 30 31 32 33 34 35 36
name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name

J
jiangjiajun 已提交
37

J
jiangjiajun 已提交
38 39 40 41
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
42 43
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
44 45 46 47
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
48

J
jiangjiajun 已提交
49
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
50 51 52 53 54 55
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
56
        'Rsqrt': ['rsqrt'],
J
jiangjiajun 已提交
57
        'Sqrt': ['sqrt'],
58
        'swish_f32': ['swish'],
J
jiangjiajun 已提交
59
        'Tanh': ['tanh'],
J
jiangjiajun 已提交
60
        'Softplus': ['softplus'],
61 62
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
J
jiangjiajun 已提交
63 64 65 66
        }],
        'Floor': ['floor'],
        'Erf': ['erf'],
        'Square': ['square']
J
jiangjiajun 已提交
67 68 69
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
J
jiangjiajun 已提交
70
        'AddV2': 'elementwise_add',
J
jiangjiajun 已提交
71 72 73
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
J
jiangjiajun 已提交
74 75 76
        'Minimum': 'elementwise_min',
        'LessEqual': 'less_equal',
        'GreaterEqual': 'greater_equal',
77 78
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
J
jiangjiajun 已提交
79 80
    }

J
jiangjiajun 已提交
81 82
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
83
        self.decoder = decoder
J
jiangjiajun 已提交
84 85
        self.graph = decoder.tf_graph
        self.weights = dict()
J
jiangjiajun 已提交
86
        self.omit_nodes = list()
J
jiangjiajun 已提交
87
        self.used_custom_layers = dict()
J
jiangjiajun 已提交
88
        program.clear()
89

J
jiangjiajun 已提交
90 91
        not_placeholder = list()
        for name in self.graph.input_nodes:
J
jiangjiajun 已提交
92 93 94 95 96
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
J
jiangjiajun 已提交
97 98 99 100
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
101

J
jiangjiajun 已提交
102 103 104
        program.inputs = self.graph.input_nodes
        program.outputs = self.graph.output_nodes

J
jiangjiajun 已提交
105
        unsupported_ops = set()
J
jiangjiajun 已提交
106
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
107
        for i, node_name in enumerate(self.graph.topo_sort):
J
jiangjiajun 已提交
108
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
109 110
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
111
            if op in self.directly_map_ops:
J
jiangjiajun 已提交
112 113
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
114 115
                self.directly_map(node)
            elif op in self.elementwise_ops:
J
jiangjiajun 已提交
116 117
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
118 119
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
120 121
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
122
                func = getattr(self, op)
J
jiangjiajun 已提交
123 124 125 126 127
                try:
                    func(node)
                except Exception as e:
                    unsupported_ops.add(op)
                    print("\n{}\n".format(traceback.format_exc()))
J
jiangjiajun 已提交
128
            else:
J
jiangjiajun 已提交
129 130
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
J
jiangjiajun 已提交
131 132
            print("\n========= {} OPs are not supported yet ===========".format(
                len(unsupported_ops)))
J
jiangjiajun 已提交
133
            for op in unsupported_ops:
J
jiangjiajun 已提交
134
                print("========== {} ============".format(op))
J
jiangjiajun 已提交
135
            sys.exit(-1)
J
jiangjiajun 已提交
136
        sys.stderr.write("\nDone!\n")
J
jiangjiajun 已提交
137

J
jiangjiajun 已提交
138 139 140
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
141
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
142 143 144 145 146 147
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
J
jiangjiajun 已提交
148 149 150 151 152 153

        program.add_layer(
            kernel="fluid.layers.{}".format(op_info[0]),
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
154 155 156 157

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
158 159
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
160 161
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
J
jiangjiajun 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        layer_id = program.add_layer(
            kernel="fluid.layers.{}".format(op_type),
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
        program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}

    def NotEqual(self, node):
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])

        program.add_layer(
            kernel="fluid.layers.not_equal",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
J
jiangjiajun 已提交
178

179 180
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
181 182
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
183
        dtype = node.dtype
J
jiangjiajun 已提交
184 185 186 187 188 189 190
        program.add_layer(
            kernel="fluid.data",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
J
jiangjiajun@baidu.com 已提交
191

J
jiangjiajun 已提交
192 193 194 195 196 197 198 199
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
J
jiangjiajun 已提交
200 201
            if value == float('inf'):
                value = "float('inf')"
J
jiangjiajun 已提交
202 203
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
204 205 206 207 208 209 210 211 212
        program.parameters[node.name] = node.value
        program.add_layer(
            kernel="fluid.layers.create_parameter",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
            default_initializer=initializer)
J
jiangjiajun 已提交
213 214

    def Transpose(self, node):
J
jiangjiajun 已提交
215 216
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
217
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
J
jiangjiajun 已提交
218 219
        perm = perm.value.tolist()

J
jiangjiajun 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)

    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
        inputs = dict()
        attr = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
J
jiangjiajun 已提交
234
        else:
J
jiangjiajun 已提交
235 236 237
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
        attr["value"] = input_value.value
J
jiangjiajun 已提交
238

J
jiangjiajun 已提交
239 240 241 242 243
        program.add_layer(
            "fluid.layers.fill_constant",
            inputs=inputs,
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
244

J
jiangjiajun 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0])

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        program.add_layer(
            kernel="fluid.layers.pixel_shuffle",
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
302

J
jiangjiajun 已提交
303 304 305 306 307
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
308 309 310 311 312 313 314 315
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
316
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
317
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("max"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
335 336

    def Conv2D(self, node):
J
jiangjiajun 已提交
337 338
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
339

J
jiangjiajun 已提交
340 341 342 343 344
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
345 346 347 348
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
J
jiangjiajun 已提交
349

J
jiangjiajun 已提交
350 351 352 353 354 355 356 357 358 359 360 361
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
            kernel_weight_name = kernel.name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
            else:
                kernel_weight_name = kernel.name.replace('/', '_')
        program.parameters[kernel_weight_name] = numpy.transpose(kernel_value,
                                                                 (3, 2, 0, 1))
J
jiangjiajun 已提交
362

J
jiangjiajun 已提交
363 364
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
365 366
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
            transpose_name = gen_name("conv2d", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            node.fluid_code.add_layer(
                "reshape", inputs=input, output=input, param_attr=attr)
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel_weight_name),
            num_filters=k_size[3],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
403

J
jiangjiajun 已提交
404
    def BiasAdd(self, node):
J
jiangjiajun 已提交
405 406 407 408 409 410 411
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.elementwise_add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
J
jiangjiajun 已提交
412 413

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
414 415 416 417 418
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
J
jiangjiajun 已提交
419
        data_format = node.get_attr("data_format").decode()
J
jiangjiajun 已提交
420 421 422 423 424

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.batch_norm",
            inputs={"input": input_name},
            outputs=[node.name],
            epsilon=node.get_attr("epsilon"),
            param_attr=string(gamma.name),
            bias_attr=string(beta.name),
            moving_mean_name=string(moving_mean.name),
            moving_variance_name=string(moving_var.name),
            is_test=True)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

        program.add_layer(
            kernel="fluid.layers.reduce_mean",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dims,
            keep_dim=keep_dims)

    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        param = self.graph.get_node(node.layer.input[1])

        input_name = input.name
        if input.dtype == 'bool':
            cast_name = gen_name('reshape', 'cast')
            program.add_layer(
                kernel="fluid.layers.cast",
                inputs={"x": input_name},
                outputs=[cast_name],
                dtype="'int32'")
            input_name = cast_name

        if param.layer_type == "Const":
            shape = param.value.tolist()
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
                program.add_layer(
                    kernel="fluid.layers.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

        if input.dtype == 'bool':
            program.add_layer(
                kernel="fluid.layers.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype="'bool'")

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
                program.add_layer(
                    kernel="fluid.layers.pad2d",
                    inputs={"input": transpose_name},
                    outputs=[node.name],
                    paddings=new_padding)
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
                return

        program.add_layer(
            kernel="fluid.layers.pad",
            inputs={"input": input.name},
            outputs=[node.name],
            paddings=paddings)

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0])
        squeeze_dims = node.get_attr('squeeze_dims')
        program.add_layer(
            kernel="fluid.layers.squeeze",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=squeeze_dims)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.softmax",
            inputs={"input": input.name},
            outputs=[node.name],
            axis=axis)

    def Shape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        input_name = input.name
        if input.dtype == 'bool':
            cast_name = gen_name('shape', 'cast')
            program.add_layer(
                kernel="fluid.layers.cast",
                inputs={"x": input.name},
                outputs=[cast_name],
                dtype="'int32'")
            input_name = cast_name
        program.add_layer(
            kernel="fluid.layers.shape",
            inputs={"input": input_name},
            outputs=[node.name])

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = self.graph.get_node(node.layer.input[1])
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        program.add_layer(
            kernel="fluid.layers.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
        program.add_layer(
            kernel="fluid.layers.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)
J
jiangjiajun@baidu.com 已提交
612

J
jiangjiajun 已提交
613
    def DepthwiseConv2dNative(self, node):
J
jiangjiajun 已提交
614 615
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
J
jiangjiajun 已提交
616
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
617

J
jiangjiajun 已提交
618 619 620 621 622 623
        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
624

J
jiangjiajun 已提交
625 626
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
627

J
jiangjiajun 已提交
628 629
        input_name = input.name
        if data_format == "NHWC":
J
jiangjiajun 已提交
630 631 632
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            num_filters=in_shape[1],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
            param_attr=string(kernel.layer_name),
            bias_attr=False)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
660 661

    def AvgPool(self, node):
J
jiangjiajun 已提交
662
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
663

J
jiangjiajun 已提交
664 665 666 667 668
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
669 670 671 672 673 674 675 676
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
J
jiangjiajun 已提交
677
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
678
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
J
jiangjiajun 已提交
696 697

    def Pack(self, node):
J
jiangjiajun 已提交
698 699
        inputs = [self.graph.get_node(name) for name in node.layer.input]
        input_names = [i.name for i in inputs]
J
jiangjiajun 已提交
700
        axis = node.get_attr("axis")
J
jiangjiajun 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        program.add_layer(
            kernel="fluid.layers.stack",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
                program.add_layer(
                    kernel="fluid.layers.unsqueeze",
                    inputs={"input": input.name},
                    outputs=[node.name],
                    axes=[0])
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
        program.add_layer(
            kernel="fluid.layers.unstack",
            inputs={"x": input_name},
            outputs=["{}_p{}".format(node.layer_name, i) for i in range(num)],
            axis=axis,
            num=num)
J
jiangjiajun 已提交
736

J
jiangjiajun 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    def ConcatV2(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]]
        axis = self.graph.get_node(node.layer.input[-1])
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])

        input_names = [i.name for i in inputs]
        for i, ipt in enumerate(inputs):
            if node.dtype == 'bool':
                cast_name = gen_name('concat', 'cast')
                program.add_layer(
                    kernel="fluid.layers.cast",
                    inputs={"x": ipt.name},
                    outputs=[cast_name],
                    dtype="'int32'")
                input_names[i] = cast_name
        program.add_layer(
            kernel="fluid.layers.concat",
            inputs={"input": input_names},
            outputs=[node.name],
            axis=axis)
        if node.dtype == 'bool':
            program.add_layer(
                kernel="fluid.layers.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype="'bool'")
J
jiangjiajun 已提交
766

J
jiangjiajun 已提交
767 768 769 770 771
    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        end = self.graph.get_node(node.layer.input[2])
        strides = self.graph.get_node(node.layer.input[3])
J
jiangjiajun 已提交
772

J
jiangjiajun 已提交
773 774
        if strides.layer_type == "Const":
            strides = strides.value.tolist()
775
        else:
J
jiangjiajun 已提交
776 777 778
            strides = self.decoder.infer_shape_tensor(strides)
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
779
        else:
J
jiangjiajun 已提交
780 781 782
            begin = self.decoder.infer_shape_tensor(begin)
        if end.layer_type == "Const":
            end = end.value.tolist()
783
        else:
J
jiangjiajun 已提交
784
            end = self.decoder.infer_shape_tensor(end)
785

J
jiangjiajun 已提交
786 787
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"
J
jiangjiajun 已提交
788

J
jiangjiajun 已提交
789 790 791 792
        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
J
jiangjiajun 已提交
793 794 795 796
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

J
jiangjiajun 已提交
797 798 799 800
        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
J
jiangjiajun 已提交
801
        shrink_axis_mask = node.get_attr('shrink_axis_mask')
J
jiangjiajun 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

        program.add_layer(
            kernel="fluid.layers.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
        if len(new_axes) > 0:
            program.add_layer(
                kernel="fluid.layers.unsqueeze",
                inputs={"input": node.name},
                outputs=[node.name],
                axes=new_axes)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
                program.add_layer(
                    kernel="fluid.layers.squeeze",
                    inputs={"input": node.name},
                    outputs=[node.name],
                    axes=shrink_axes)

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0])
        input = self.graph.get_node(node.layer.input[1])
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        program.add_layer(
            kernel="fluid.layers.split",
            inputs={"input": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
            dim=dim)
872 873

    def Slice(self, node):
J
jiangjiajun 已提交
874 875 876 877 878 879
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        size = self.graph.get_node(node.layer.input[2])

        inputs = {"x": input.name}
        attrs = {}
J
jiangjiajun 已提交
880 881
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
882
            attrs['offsets'] = begin
J
jiangjiajun 已提交
883
        else:
J
jiangjiajun 已提交
884 885 886 887 888 889 890 891
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
            #             program.add_layer(
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
J
jiangjiajun 已提交
892
            begin = self.decoder.infer_tensor(begin).tolist()
J
jiangjiajun 已提交
893 894
            attrs['offsets'] = begin
        if size.layer_type == "Const":
J
jiangjiajun 已提交
895
            size = size.value.tolist()
J
jiangjiajun 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        program.add_layer(
            kernel="fluid.layers.crop_tensor",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
J
jiangjiajun 已提交
922
        else:
J
jiangjiajun 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_nearest",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
953

J
jiangjiajun 已提交
954 955 956 957 958 959
    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}
J
jiangjiajun 已提交
960

J
jiangjiajun 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_bilinear",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0])
        dtype = node.dtype
        program.add_layer(
            kernel="fluid.layers.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        program.add_layer(
            kernel="fluid.layers.reduce_sum",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
        program.add_layer(
            kernel="fluid.layers.reduce_max",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
1031

J
jiangjiajun 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0])
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
1050 1051

    def Conv2DBackpropInput(self, node):
J
jiangjiajun 已提交
1052 1053 1054
        out_shape = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        input = self.graph.get_node(node.layer.input[2])
1055

1056
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
1057

J
jiangjiajun 已提交
1058 1059 1060 1061 1062 1063
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])

1064
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
1065 1066
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
1067
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
1068 1069 1070
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
1071
        pad_mode = node.get_attr("padding").decode()
1072 1073 1074
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
1075

J
jiangjiajun 已提交
1076 1077 1078 1079 1080
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
1081 1082 1083
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d_transpose",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel.layer_name),
            num_filters=k_size[2],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
1111

J
jiangjiajun 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0])
        expand_times = self.graph.get_node(node.layer.input[1])
        inputs = {"x": input.name}
        attr = dict()
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
            attr["expand_times"] = expand_times
        else:
            inputs["expand_times"] = expand_times.name
J
jiangjiajun 已提交
1122

J
jiangjiajun 已提交
1123 1124 1125 1126 1127
        program.add_layer(
            kernel="fluid.layers.expand",
            inputs=inputs,
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
1128

J
jiangjiajun 已提交
1129 1130 1131 1132 1133 1134
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
        inputs = dict()
        attr = dict()
1135

J
jiangjiajun 已提交
1136 1137
        if start.layer_type == "Const":
            attr["start"] = start.value
1138
        else:
J
jiangjiajun 已提交
1139 1140 1141
            inputs["start"] = start.name
        if limit.layer_type == "Const":
            attr["end"] = limit.value
J
jiangjiajun 已提交
1142
        else:
J
jiangjiajun 已提交
1143 1144 1145
            inputs["end"] = limit.name
        if delta.layer_type == "Const":
            attr["step"] = delta.value
J
jiangjiajun 已提交
1146
        else:
J
jiangjiajun 已提交
1147 1148 1149 1150 1151 1152 1153 1154
            inputs["step"] = delta.name
        attr["dtype"] = string(node.dtype)

        program.add_layer(
            kernel="fluid.layers.range",
            inputs=inputs,
            outputs=[node.name],
            **attr)
J
jiangjiajun 已提交
1155 1156

    def SquaredDifference(self, node):
J
jiangjiajun 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
        layer_id = program.add_layer(
            "fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name])
        program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
        layer_id = program.add_layer(
            "fluid.layers.elementwise_mul", inputs=inputs, outputs=[node.name])
        program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}

    def OneHot(self, node):
        input = self.graph.get_node(node.layer.input[0])
        depth = self.graph.get_node(node.layer.input[1])
        on_value = self.graph.get_node(node.layer.input[2])
        off_value = self.graph.get_node(node.layer.input[3])
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

        program.add_layer(
            "fluid.one_hot",
            inputs={"input": input.name},
            outputs=[node.name],
            depth=depth.value)

    def Pow(self, node):
        x = self.graph.get_node(node.layer.input[0])
        factor = self.graph.get_node(node.layer.input[1])
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["factor"] = factor.value.tolist()
        else:
            inputs["factor"] = factor.name
        program.add_layer(
            "fluid.layers.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["dim"] = reduce_idx.value.tolist()
        attr["keep_dim"] = node.get_attr("keep_dims")

        program.add_layer(
            "fluid.layers.reduce_all",
            inputs={"input": input.name},
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
        embeddings = self.graph.get_node(node.layer.input[0])
        index = self.graph.get_node(node.layer.input[1])
        axis = self.graph.get_node(node.layer.input[2])
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
        axis = axis.value.tolist()
        assert axis == 0, "Only support axis=0 in GatherV2 OP"
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
            program.add_layer(
                "fluid.layers.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'input': embeddings.name, 'index': index_name}
        program.add_layer(
            "fluid.layers.gather",
            inputs=inputs,
            outputs=[node.name],
            overwrite=False)
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)

    def ExpandDims(self, node):
J
jiangjiajun 已提交
1255 1256
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        inputs = {"input": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axes'] = dim
        else:
            inputs['axes'] = y.name
        program.add_layer(
            "fluid.layers.unsqueeze",
            inputs=inputs,
            outputs=[node.name],
            **attr)