tf_op_mapper.py 48.8 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.util import *
J
jiangjiajun 已提交
18
import inspect
J
jiangjiajun 已提交
19
import numpy
J
jiangjiajun 已提交
20
import sys
21

J
jiangjiajun 已提交
22

J
jiangjiajun 已提交
23 24 25 26 27 28 29 30
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
31

J
jiangjiajun 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
def nhwc_dim_to_nchw(node, dim):
    tf_data_format = list(node.tf_data_format)
    pd_data_format = list(node.pd_data_format)
    if isinstance(dim, list):
        for i in range(len(dim)):
            char = tf_data_format[dim[i]]
            dim[i] = pd_data_format.index(char)
    else:
        char = tf_data_format[dim]
        dim = pd_data_format.index(char)
    return dim

    if dim < 0:
        dim += 4
    if dim > 0:
        dim = (dim + 1) % 4 + int((dim + 1) / 4)
    return dim


J
jiangjiajun 已提交
51
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
52 53 54 55 56 57 58
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Shape': ['shape'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
59
        'Rsqrt': ['rsqrt'],
60 61 62 63
        'swish_f32': ['swish'],
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
        }]
J
jiangjiajun 已提交
64 65 66 67 68 69
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
70 71
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
J
jiangjiajun 已提交
72 73
    }

J
jiangjiajun 已提交
74 75
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
76
        self.decoder = decoder
J
jiangjiajun 已提交
77
        self.graph = decoder.tf_graph
78
        self.batch_node = None
J
jiangjiajun 已提交
79
        self.weights = dict()
J
jiangjiajun 已提交
80
        self.omit_nodes = list()
J
jiangjiajun 已提交
81
        self.used_custom_layers = dict()
82

J
jiangjiajun 已提交
83 84 85 86 87 88 89
        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(name).layer_type != "Placeholder":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
90

91
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
J
jiangjiajun 已提交
92
        unsupported_ops = set()
93 94
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...    ".format(i + 1))
95 96
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
97
            if op in self.directly_map_ops:
J
jiangjiajun 已提交
98 99
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
100 101
                self.directly_map(node)
            elif op in self.elementwise_ops:
J
jiangjiajun 已提交
102 103
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
104 105
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
106 107
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
108 109
                func = getattr(self, op)
                func(node)
J
jiangjiajun 已提交
110
            else:
J
jiangjiajun 已提交
111 112
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
113 114 115
            sys.stderr.write(
                "=========={} Ops are not supported yet======\n".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
116
            for op in unsupported_ops:
117
                sys.stderr.write("========== {} ==========\n".format(op))
J
jiangjiajun 已提交
118
            sys.exit(-1)
119
        sys.stderr.write('\nDone!\n')
120

J
jiangjiajun 已提交
121 122 123 124 125 126 127 128 129
    def add_omit_nodes(self, in_node_name, out_node_name):
        in_node = self.graph.get_node(in_node_name)
        out_node = self.graph.get_node(out_node_name)
        index = in_node.outputs.index(out_node_name)
        del in_node.outputs[index]
        index = out_node.inputs.index(in_node_name)
        del out_node.inputs[index]
        self.omit_nodes.append(in_node.layer_name)

J
jiangjiajun 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_node(node.layer.input[0], copy=True)
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
        node.fluid_code.add_layer(op_info[0],
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
148 149 150 151
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
152 153 154 155
        if len(x_shape) == 0:
            x_shape = [1]
        if len(y_shape) == 0:
            y_shape = [1]
J
jiangjiajun 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        # incomplement broadcasting support for paddle
        x_input = x
        y_input = y
        if len(x_shape) < len(y_shape):
            unrevertable_ops = [
                "elementwise_sub", "elementwise_div", "elementwise_floordiv",
                "elementwise_mod", "elementwise_pow"
            ]
            if op_type not in unrevertable_ops:
                x_input = y
                y_input = x
                x_shape = y.out_shapes[0]
                y_shape = x.out_shapes[0]
            else:
                raise Exception("Unexpected situation happend")

J
jiangjiajun 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184
        if len(x_shape) == 4 and len(y_shape) == 1:
            if x_input.tf_data_format == "NHWC":
                axis = 1
            else:
                axis = -1
            attr = {"axis": axis}
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
            return

J
jiangjiajun 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        is_sub_seq = True
        for i in range(len(y_shape)):
            index = -1 * i - 1
            if y_shape[index] != x_shape[index]:
                is_sub_seq = False
        if not is_sub_seq:
            x_expand_times = [1] * len(x_shape)
            y_expand_times = [1] * len(y_shape)
            x_need_expand = False
            y_need_expand = False
            for i in range(len(y_shape)):
                index = -1 * i - 1
                if y_shape[index] != x_shape[index]:
                    if y_shape[index] == 1:
                        y_expand_times[index] = x_shape[index]
                        y_need_expand = True
                    elif x_shape[index] == 1:
                        x_expand_times[index] = y_shape[index]
                        x_need_expand = True
                    else:
                        raise Exception("Unexpected situation happend")
            if x_need_expand:
J
jiangjiajun 已提交
207 208 209 210
                if len(x_expand_times) == 3 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [2, 0, 1]]
                if len(x_expand_times) == 4 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
211 212 213 214 215 216 217
                attr = {"expand_times": x_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=x_input,
                                          output="x_tmp",
                                          param_attr=attr)
                x_input = "x_tmp"
            if y_need_expand:
J
jiangjiajun 已提交
218 219 220 221
                if len(y_expand_times) == 3 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [2, 0, 1]]
                if len(y_expand_times) == 4 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
222 223 224 225 226 227 228 229 230 231 232 233
                attr = {"expand_times": y_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=y_input,
                                          output="y_tmp",
                                          param_attr=attr)
                y_input = "y_tmp"
        inputs = {"x": x_input, "y": y_input}
        node.fluid_code.add_layer(op_type,
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

234 235
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
236 237
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
J
jiangjiajun 已提交
238 239 240 241
        if node.tf_data_format == "NHWC" and len(shape) == 4:
            shape = [shape[i] for i in [0, 3, 1, 2]]
        elif node.tf_data_format == "NCHW" and len(shape) == 4:
            self.graph.data_format_propagation(node)
242 243
        dtype = node.dtype
        attr = {
J
jiangjiajun 已提交
244
            'dtype': string(dtype),
245
            'shape': shape,
J
jiangjiajun 已提交
246 247
            'name': string(node.layer_name),
            'append_batch_size': False
248
        }
249 250 251
        if shape[0] < 0:
            self.batch_node = node

J
jiangjiajun 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279
        self.weights[node.layer_name] = node.value

        if node.tf_data_format == "NHWC":
            if len(shape) == 4:
                shape = [shape[i] for i in [0, 3, 1, 2]]
            if len(shape) == 3:
                shape = [shape[i] for i in [2, 0, 1]]
                self.weights[node.layer_name] = numpy.transpose(
                    node.value, (2, 0, 1))
        elif node.tf_data_format == "NCHW":
            if len(shape) == 4:
                self.graph.data_format_propagation(node)

J
jiangjiajun 已提交
280 281 282 283 284 285 286 287 288 289 290 291
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
J
jiangjiajun 已提交
292 293
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
294
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
295
        del self.weights[perm.layer_name.replace('/', '_')]
J
jiangjiajun 已提交
296 297 298
        perm.fluid_code.clear()
        perm = perm.value.tolist()

J
jiangjiajun 已提交
299
        if perm == [0, 3, 1, 2] and input.data_format == "NHWC":
300 301 302 303 304 305 306 307 308
            #            node.fluid_code.add_layer("assign",
            #                                      inputs=input,
            #                                      output=node,
            #                                      param_attr=None)
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
309 310 311
            node.tf_data_format = "NCHW"
            self.graph.data_format_propagation(node)
        elif perm == [0, 2, 3, 1] and input.tf_data_format == "NCHW":
312 313 314 315 316
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
            node.tf_data_format = "NHWC"
            self.graph.data_format_propagation(node)
        elif len(input.out_shapes[0]) > 4:
            tf_data_format = list(input.tf_data_format)
            pd_data_format = list(input.pd_data_format)
            new_perm = [i for i in range(len(perm))]
            for i in range(len(perm)):
                char0 = tf_data_format[i]
                char1 = tf_data_format[perm[i]]
                index0 = pd_data_format.index(char0)
                index1 = pd_data_format.index(char1)
                new_perm[index0] = index1
            node.tf_data_format = [tf_data_format[i] for i in perm]
            node.pd_data_format = [pd_data_format[i] for i in perm]
            attr = {'perm': new_perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        elif len(node.out_shapes[0]) != 4:
            attr = {'perm': perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            raise Exception("Unexpected situation happend in Transpose OP")
J
jiangjiajun 已提交
344

J
jiangjiajun 已提交
345 346
    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
347

J
jiangjiajun 已提交
348
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
349 350 351
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
352 353 354 355
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
356
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
357
        padding = 0
J
jiangjiajun 已提交
358

J
jiangjiajun 已提交
359
        if not channel_first:
J
jiangjiajun 已提交
360 361
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
362
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
363 364
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
365 366

        if pad_mode == "SAME":
J
jiangjiajun 已提交
367 368
            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
J
jiangjiajun 已提交
369 370 371
            pad_h = pad_h[0] + pad_h[1]
            pad_w = pad_w[0] + pad_w[1]
            attr = {"paddings": [0, pad_h, 0, pad_w], "pad_value": -10000.0}
J
jiangjiajun 已提交
372 373 374 375 376
            node.fluid_code.add_layer("pad2d",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            input = node
J
jiangjiajun 已提交
377
        attr = {
J
jiangjiajun 已提交
378
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
379
            "pool_type": string("max"),
J
jiangjiajun 已提交
380
            "pool_padding": padding,
J
jiangjiajun 已提交
381
            "pool_stride": strides[2:4]
J
jiangjiajun 已提交
382
        }
J
jiangjiajun 已提交
383 384 385 386
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
387 388 389 390 391

    def Conv2D(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2D should be Const"
J
jiangjiajun 已提交
392
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
393

J
jiangjiajun 已提交
394
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
395 396
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
397
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
398 399 400
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
401 402 403 404 405
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
406 407 408 409
        padding = 0

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
410 411 412 413 414

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
415 416
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
417

J
jiangjiajun 已提交
418 419 420
        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
J
jiangjiajun 已提交
421 422 423 424 425 426 427 428 429
            if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
                padding = [pad_h[0], pad_w[0]]
            else:
                attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
                node.fluid_code.add_layer("pad2d",
                                          inputs=input,
                                          output=node,
                                          param_attr=attr)
                input = node
J
jiangjiajun 已提交
430 431 432 433 434 435
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
436 437
            "dilation": dilations[2:4],
            "padding": padding
J
jiangjiajun 已提交
438
        }
J
jiangjiajun 已提交
439 440 441 442
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
443

J
jiangjiajun 已提交
444 445 446 447 448 449 450 451 452 453 454 455
    def BiasAdd(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        bias = self.graph.get_node(node.layer.input[1], copy=True)
        axis = -1
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = 1
        inputs = {"x": input, "y": bias}
        attr = {"axis": axis}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
456 457 458 459 460 461 462

    def FusedBatchNorm(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        gamma = self.graph.get_node(node.layer.input[1], copy=True)
        beta = self.graph.get_node(node.layer.input[2], copy=True)
        moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
        moving_var = self.graph.get_node(node.layer.input[4], copy=True)
J
jiangjiajun 已提交
463 464
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
465 466 467 468 469

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
470 471 472 473
        self.add_omit_nodes(gamma.layer_name, node.layer_name)
        self.add_omit_nodes(beta.layer_name, node.layer_name)
        self.add_omit_nodes(moving_mean.layer_name, node.layer_name)
        self.add_omit_nodes(moving_var.layer_name, node.layer_name)
J
jiangjiajun 已提交
474 475
        if channel_first:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
476

J
jiangjiajun 已提交
477 478 479 480 481 482 483 484 485 486
        attr = {
            "epsilon": node.get_attr("epsilon"),
            "param_attr": string(gamma.layer_name),
            "bias_attr": string(beta.layer_name),
            "moving_mean_name": string(moving_mean.layer_name),
            "moving_variance_name": string(moving_var.layer_name),
            "is_test": True
        }

        node.fluid_code.add_layer("batch_norm",
J
jiangjiajun 已提交
487
                                  inputs=input,
J
jiangjiajun 已提交
488 489 490 491 492 493 494
                                  output=node,
                                  param_attr=attr)

    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
495
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
496

J
jiangjiajun 已提交
497
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
498 499
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
500
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
501 502 503
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
504 505 506 507 508
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
509 510 511 512
        padding = 0

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
513 514 515 516 517

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
518 519
        else:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
520 521 522 523

        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
J
jiangjiajun 已提交
524 525 526 527
            if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
                padding = [pad_h[0], pad_w[0]]
            else:
                attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
J
jiangjiajun 已提交
528
                node.fluid_code.add_layer("pad2d",
J
jiangjiajun 已提交
529
                                          inputs=input,
J
jiangjiajun 已提交
530 531
                                          output=node,
                                          param_attr=attr)
J
jiangjiajun 已提交
532 533
                input = node

J
jiangjiajun 已提交
534 535 536 537 538 539 540
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": in_shape[1],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
J
jiangjiajun 已提交
541
            "groups": k_size[3] * in_shape[1],
J
jiangjiajun 已提交
542
            "use_cudnn": False,
J
jiangjiajun 已提交
543
            "padding": padding
J
jiangjiajun 已提交
544
        }
J
jiangjiajun 已提交
545
        node.fluid_code.add_layer("conv2d",
J
jiangjiajun 已提交
546
                                  inputs=input,
J
jiangjiajun 已提交
547 548
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
549

J
jiangjiajun 已提交
550 551 552 553 554
    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        param = self.graph.get_node(node.layer.input[1], copy=True)
        if param.layer_type == "Const":
            attr = {"shape": param.value.tolist()}
J
jiangjiajun 已提交
555
            self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
556 557
        else:
            # Here is a trick method to solove tensor parameter in tensorflow
J
jiangjiajun 已提交
558 559 560
            shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
            if shape.count(-1) <= 1:
                attr = {"shape": shape}
J
jiangjiajun 已提交
561 562 563 564 565
                self.add_omit_nodes(param.layer_name, node.layer_name)
            elif shape.count(-1) == 2 and shape[0] == -1:
                shape[0] = 0
                attr = {"shape": shape}
                self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
            else:
                assert len(param.out_shapes[0]
                           ) == 1, "Unexpected situation of shape parameter"
                attr = {"shape": [-1]}
                node.fluid_code.add_layer("reshape",
                                          inputs=param,
                                          output="shape_param",
                                          param_attr=attr)
                attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
                node.fluid_code.add_layer("split",
                                          inputs="shape_param",
                                          output=node,
                                          param_attr=attr)
                new_param = "["
                for i in range(param.out_shapes[0][0]):
                    new_param += (node.layer_name + "[{}]".format(i) + ", ")
                new_param = new_param.strip(", ") + "]"
                attr = {"shape": new_param}
584 585 586 587 588 589 590 591 592 593 594 595 596 597

        if len(input.out_shapes[0]) == 4 and node.tf_data_format == "NHWC":
            if len(attr["shape"]) < 3:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                return

J
jiangjiajun 已提交
598
        if len(attr["shape"]) == 4 and node.tf_data_format == "NHWC":
J
jiangjiajun 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
            input_shape = self.decoder.infer_tensor(input).shape
            if input_shape[1] == attr["shape"][1]:
                attr["shape"] = [attr["shape"][i] for i in [0, 3, 1, 2]]
            else:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                perm = {"perm": [0, 3, 1, 2]}
                node.fluid_code.add_layer("transpose",
                                          inputs=node,
                                          output=node,
                                          param_attr=perm)
                return
J
jiangjiajun 已提交
618 619 620 621 622 623 624
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def AvgPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
625

J
jiangjiajun 已提交
626
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
627 628 629
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
630 631 632 633 634 635 636 637 638
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
639
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
640 641
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
642 643

        attr = {
J
jiangjiajun 已提交
644
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
645 646 647 648
            "pool_type": string("avg"),
            "pool_stride": strides[2:4]
        }
        if pad_mode == "SAME":
J
jiangjiajun 已提交
649 650
            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
J
jiangjiajun 已提交
651 652 653 654
            assert pad_h[0] == pad_h[1] and pad_w[0] == pad_w[
                1], "Cannot map AvgPool"
            attr["pool_padding"] = [pad_h[0], pad_w[0]]
        node.fluid_code.add_layer("pool2d",
J
jiangjiajun 已提交
655
                                  inputs=input,
J
jiangjiajun 已提交
656 657 658
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
659 660 661 662 663 664
    def SplitV(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        num_sections = self.graph.get_node(node.layer.input[1], copy=True)
        dim = self.graph.get_node(node.layer.input[2], copy=True)
        assert num_sections.layer_type == "Const"
        assert dim.layer_type == "Const"
J
jiangjiajun 已提交
665 666
        self.add_omit_nodes(num_sections.layer_name, node.layer_name)
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
667 668 669
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)
J
jiangjiajun 已提交
670 671 672 673 674 675 676 677
        attr = {
            "num_or_sections": num_sections.value.tolist(),
            "dim": dim.value
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
678 679

    def ConcatV2(self, node):
J
jiangjiajun 已提交
680 681 682 683
        inputs = [
            self.graph.get_node(name, copy=True)
            for name in node.layer.input[:-1]
        ]
J
jiangjiajun 已提交
684 685
        axis = self.graph.get_node(node.layer.input[-1], copy=True)
        assert axis.layer_type == "Const"
J
jiangjiajun 已提交
686
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
687 688 689 690 691
        axis = axis.value
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(inputs[0], axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
692 693 694 695
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
696 697 698 699

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
700
        self.add_omit_nodes(expand_times.layer_name, node.layer_name)
701 702 703 704
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
        else:
            expand_times = self.decoder.infer_shape_tensor(expand_times)
J
jiangjiajun 已提交
705 706 707 708 709
        if input.tf_data_format == "NHWC":
            if len(input.out_shapes[0]) == 4:
                expand_times = [expand_times[i] for i in [0, 3, 1, 2]]
            elif len(input.out_shape[0]) == 3:
                expand_times = [expand_times[i] for i in [2, 0, 1]]
710 711 712 713
        for i in range(len(expand_times)):
            if expand_times[i] < 0:
                expand_times[i] = 1

J
jiangjiajun 已提交
714
        attr = {"expand_times": expand_times}
J
jiangjiajun 已提交
715 716 717 718
        node.fluid_code.add_layer("expand",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
719 720

    def Pack(self, node):
J
jiangjiajun 已提交
721 722 723
        inputs = [
            self.graph.get_node(name, copy=True) for name in node.layer.input
        ]
J
jiangjiajun 已提交
724 725 726 727 728 729 730 731 732 733 734 735
        axis = node.get_attr("axis")
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            tf_data_format = list(inputs[0].tf_data_format)
            tf_data_format.insert(axis, str(len(tf_data_format)))
            axis = nhwc_dim_to_nchw(inputs[0], axis)
            pd_data_format = list(inputs[0].pd_data_format)
            pd_data_format.insert(axis, str(len(pd_data_format)))
            node.tf_data_format = "".join(tf_data_format)
            node.pd_data_format = "".join(pd_data_format)

        attr = {"axis": axis}
J
jiangjiajun 已提交
736 737 738
        node.fluid_code.add_layer("stack",
                                  inputs=inputs,
                                  output=node,
J
jiangjiajun 已提交
739
                                  param_attr=attr)
J
jiangjiajun 已提交
740 741 742

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
743
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
744
        assert paddings.layer_type == "Const", "Padding should be Const"
J
jiangjiajun 已提交
745
        self.add_omit_nodes(paddings.layer_name, node.layer_name)
J
jiangjiajun 已提交
746 747 748
        paddings = paddings.value.flatten().tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]]
J
jiangjiajun 已提交
749 750 751 752 753 754

        pad_op = "pad"
        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
                paddings = paddings[4:]
                pad_op = "pad2d"
J
jiangjiajun 已提交
755
        attr = {"paddings": paddings}
J
jiangjiajun 已提交
756
        node.fluid_code.add_layer(pad_op,
J
jiangjiajun 已提交
757 758 759
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
760 761 762 763 764 765 766

    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
        if start.layer_type == "Const":
            start = start.value
767 768
        else:
            start = self.decoder.infer_tensor(start)
J
jiangjiajun 已提交
769 770
        if limit.layer_type == "Const":
            limit = limit.value
771 772
        else:
            limit = self.decoder.infer_tensor(limit)
J
jiangjiajun 已提交
773 774
        if delta.layer_type == "Const":
            delta = delta.value
775 776
        else:
            delta = self.decoder.infer_tensor(delta)
J
jiangjiajun 已提交
777 778 779
        self.add_omit_nodes(start.layer_name, node.layer_name)
        self.add_omit_nodes(limit.layer_name, node.layer_name)
        self.add_omit_nodes(delta.layer_name, node.layer_name)
780

J
jiangjiajun 已提交
781
        inputs = {"start": start, "end": limit, "step": delta}
J
jiangjiajun 已提交
782
        attr = {"dtype": string(node.dtype)}
783 784 785 786
        node.fluid_code.add_layer("range",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
J
jiangjiajun 已提交
787 788 789 790 791

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
J
jiangjiajun 已提交
792
        dims = reduce_idx.value.tolist()
J
jiangjiajun 已提交
793
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
794 795 796 797 798 799

        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(dims)):
                dims[i] = nhwc_dim_to_nchw(input, dims[i])

        attr = {"dim": dims, "keep_dim": keep_dims}
J
jiangjiajun 已提交
800 801 802 803 804 805 806 807 808 809 810
        node.fluid_code.add_layer("reduce_mean",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        inputs = {"x": x, "y": y}
J
jiangjiajun 已提交
811 812 813 814 815 816 817 818 819 820
        # fix paddle shape infer problem
        # should be removed after paddle 1.6
        if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
            shape = x.out_shapes[0]
            shape[-1] = y.out_shapes[0][0]
            attr = {"shape": shape}
            node.fluid_code.add_layer("reshape",
                                      inputs=x,
                                      output=x,
                                      param_attr=attr)
J
jiangjiajun 已提交
821 822 823 824 825 826 827 828 829 830
        attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = self.graph.get_node(node.layer.input[1], copy=True)
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
J
jiangjiajun 已提交
831
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
832 833 834 835
        axis = axis.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848
        node.fluid_code.add_layer("argmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        end = self.graph.get_node(node.layer.input[2], copy=True)
        strides = self.graph.get_node(node.layer.input[3], copy=True)
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
J
jiangjiajun 已提交
849 850 851
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(end.layer_name, node.layer_name)
        self.add_omit_nodes(strides.layer_name, node.layer_name)
J
jiangjiajun 已提交
852 853 854
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[0] == 1

J
jiangjiajun 已提交
855 856 857 858 859 860
        begin = begin.value.tolist()
        end = end.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            begin = [begin[i] for i in [0, 3, 1, 2]]
            end = [end[i] for i in [0, 3, 1, 2]]

J
jiangjiajun 已提交
861 862 863 864 865 866 867 868 869
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        attr = {
            "axes": [i for i in range(len(strides))],
            "starts": begin,
            "ends": end
        }
J
jiangjiajun 已提交
870 871 872 873
        node.fluid_code.add_layer("slice",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
874 875 876 877 878

    def Slice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        size = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
879 880
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(size.layer_name, node.layer_name)
J
jiangjiajun 已提交
881 882 883 884 885 886 887 888
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
            begin = self.decoder.infer_tensor(begin).tolist()
        if size.layer_type == "const":
            size = size.value.tolist()
        else:
            size = self.decoder.infer_tensor(size).tolist()
889

J
jiangjiajun 已提交
890 891 892 893
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            size = [size[i] for i in [0, 3, 1, 2]]
            begin = [begin[i] for i in [0, 3, 1, 2]]

894 895 896 897 898 899 900 901 902 903 904 905
        for i in range(len(size)):
            if size[i] < 0:
                size[i] = 99999999
            else:
                size[i] = size[i] + begin[i]

        attr = {
            "axes": [i for i in range(len(size))],
            "starts": begin,
            "ends": size
        }
        node.fluid_code.add_layer("slice",
J
jiangjiajun 已提交
906 907 908
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
909 910

    def Conv2DBackpropInput(self, node):
911
        out_shape = self.graph.get_node(node.layer.input[0], copy=True)
912
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
913 914
        input = self.graph.get_node(node.layer.input[2], copy=True)

915
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
916

J
jiangjiajun 已提交
917
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
918 919
        self.add_omit_nodes(out_shape.layer_name, node.layer_name)

920
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
921 922
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
923
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
924 925 926
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

927
        pad_mode = node.get_attr("padding")
928 929 930 931
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
932

J
jiangjiajun 已提交
933 934
        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
935 936 937 938
        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
939 940
        else:
            self.data_format_propagation(node)
941

J
jiangjiajun 已提交
942
        padding = 0
943 944 945
        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
J
jiangjiajun 已提交
946 947 948 949 950 951 952 953 954
            if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
                padding = [pad_h[0], pad_w[0]]
            else:
                attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
                node.fluid_code.add_layer("pad2d",
                                          inputs=input,
                                          output=node,
                                          param_attr=attr)
                input = node
955

956 957 958 959 960 961
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
962 963
            "dilation": dilations[2:4],
            "padding": padding
964
        }
965 966 967 968
        node.fluid_code.add_layer("conv2d_transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
969 970 971 972 973 974

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
975 976 977 978 979
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
980 981 982 983 984 985 986 987 988 989
        node.fluid_code.add_layer("reduce_max",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
990 991 992 993 994
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
995 996 997 998 999
        node.fluid_code.add_layer("reduce_sum",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
1000 1001 1002 1003 1004 1005 1006 1007
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        dtype = node.dtype_map[node.get_attr('DstT')]
        attr = {"dtype": string(dtype)}
        node.fluid_code.add_layer("cast",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

#    def FloorDiv(self, node):
#        x = self.graph.get_node(node.layer.input[0], copy=True)
#        y = self.graph.get_node(node.layer.input[1], copy=True)
#        inputs = {'x': x, 'y': y}
#        node.fluid_code.add_layer("elementwise_div",
#                                  inputs=inputs,
#                                  output=node,
#                                  param_attr=None)
#        node.fluid_code.add_layer("floor",
#                                  inputs=node,
#                                  output=node,
#                                  param_attr=None)
J
jiangjiajun 已提交
1022 1023 1024 1025

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0], copy=True)
        input = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1026
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
1027
        num_split = node.get_attr('num_split')
J
jiangjiajun 已提交
1028 1029 1030 1031 1032
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"num_or_sections": num_split, "dim": dim}
J
jiangjiajun 已提交
1033 1034 1035 1036
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(squeeze_dims)):
                squeeze_dims[i] = nhwc_dim_to_nchw(input, squeeze_dims[i])
        attr = {"axes": squeeze_dims}
        node.fluid_code.add_layer("squeeze",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr("axis")
J
jiangjiajun 已提交
1053 1054
        if axis is None:
            axis = -1 + len(input.out_shapes[0])
J
jiangjiajun 已提交
1055 1056 1057 1058 1059 1060 1061
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
        node.fluid_code.add_layer("softmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1062 1063 1064 1065

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1066
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
J
jiangjiajun 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(resize_shape)
        align_corners = node.get_attr("align_corners")
        attr = {"align_corners": align_corners, "out_shape": resize_shape}
        node.fluid_code.add_layer("resize_nearest",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1081
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
J
jiangjiajun 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(resize_shape)
        align_corners = node.get_attr("align_corners")
        attr = {
            "align_corners": align_corners,
            "out_shape": resize_shape,
            "align_mode": 1
        }
        node.fluid_code.add_layer("resize_bilinear",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1096 1097 1098 1099

    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1100
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {"align_corners": align_corners, "out_shape": resize_shape}
        node.fluid_code.add_layer("resize_nearest",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1116
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {
            "align_corners": align_corners,
            "out_shape": resize_shape,
            "align_mode": 1
        }
        node.fluid_code.add_layer("resize_bilinear",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

    def GreaterEqual(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("greater_equal",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0], copy=True)
        self.add_omit_nodes(shape.layer_name, node.layer_name)
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
        else:
            shape = self.decoder.infer_shape_tensor(shape)
        if node.tf_data_format == "NHWC" and len(shape) == 4:
            shape = [shape[i] for i in [0, 3, 1, 2]]
        attr = {"shape": shape, "min": 0.0, "max": 0.9999}
        if shape[0] < 0:
            input = self.batch_node
            node.fluid_code.add_layer("uniform_random_batch_size_like",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            node.fluid_code.add_layer("uniform_random",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)