tf_parser.py 6.1 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
J
jiangjiajun 已提交
16 17
from x2paddle.core.fluid_code import FluidCode
from tensorflow.python.framework import tensor_util
J
jiangjiajun 已提交
18
from tensorflow.python.platform import gfile
J
jiangjiajun 已提交
19
from tensorflow.core.framework import attr_value_pb2
J
jiangjiajun 已提交
20 21
import tensorflow as tf
import copy
J
jiangjiajun 已提交
22

23

J
jiangjiajun 已提交
24 25
class TFGraphNode(GraphNode):
    def __init__(self, layer, layer_name=None):
J
jiangjiajun 已提交
26 27 28 29
        if layer_name is None:
            super(TFGraphNode, self).__init__(layer, layer.name)
        else:
            super(TFGraphNode, self).__init__(layer, layer_name)
J
jiangjiajun 已提交
30

J
jiangjiajun 已提交
31
        self.layer_type = layer.op
J
jiangjiajun 已提交
32
        self.fluid_code = FluidCode()
J
jiangjiajun 已提交
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
        self.dtype_map = {1: "float32", 3: "int32", 9: "int64"}

    @property
    def out_shapes(self):
        values = self.layer.attr["_output_shapes"].list.shape
        out_shapes = list()
        for value in values:
            shape = [dim.size for dim in value.dim]
            out_shapes.append(shape)
        return out_shapes

    @property
    def dtype(self):
        dtype = self.layer.attr["dtype"].type
        if dtype not in self.dtype_map:
            raise Exception("Dtype[{}] not in dtype_map".format(dtype))
        return self.dtype_map[dtype]

J
jiangjiajun 已提交
52 53 54 55 56 57 58 59
    @property
    def value(self):
        assert self.layer_type == "Const", "Only Const node has value."

        attr = self.layer.attr['value']
        field = getattr(attr, attr.WhichOneof('value'))
        return tensor_util.MakeNdarray(field)

J
jiangjiajun 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    def get_attr(self, name):
        if name not in self.layer.attr:
            return None
        attr = self.layer.attr[name]
        field = attr.WhichOneof('value')
        value = getattr(attr, field) if field else None

        if isinstance(value, attr_value_pb2.AttrValue.ListValue):
            result = list(value.ListFields()[0][1])
            for i in range(len(result)):
                if isinstance(result[i], int):
                    result[i] = int(result[i])
                try:
                    if isinstance(result[i], long):
                        result[i] = int(result[i])
                except:
                    pass
            return result
        else:
            return value

J
jiangjiajun 已提交
81 82 83 84

class TFGraph(Graph):
    def __init__(self, model):
        super(TFGraph, self).__init__(model)
J
jiangjiajun 已提交
85
        self.identity_map = dict()
J
jiangjiajun 已提交
86 87 88 89

    def build(self):
        for layer in self.model.node:
            self.node_map[layer.name] = TFGraphNode(layer)
J
jiangjiajun 已提交
90

J
jiangjiajun 已提交
91 92 93 94
        for layer_name, node in self.node_map.items():
            for in_node in node.layer.input:
                if in_node not in self.node_map:
                    if in_node.strip().split(':')[0] in self.node_map:
J
jiangjiajun 已提交
95
                        self.connect(in_node.strip().split(':')[0], layer_name)
J
jiangjiajun 已提交
96
                    else:
97 98 99
                        raise Exception(
                            'input[{}] of node[{}] does not exist in node_map'.
                            format(in_node, layer_name))
J
jiangjiajun 已提交
100 101 102
                else:
                    self.connect(in_node, layer_name)

103
        super(TFGraph, self).build()
J
jiangjiajun 已提交
104

J
jiangjiajun 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        # tensorflow graph optimize
        self._remove_isolated_node()
        self._remove_identity_node()

    def get_node(self, node_name, copy=False):
        items = node_name.strip().split(':')
        if items[0] in self.identity_map:
            items[0] = self.identity_map[items[0]]
        new_node_name = ":".join(items)
        return super(TFGraph, self).get_node(new_node_name, copy)

    def _remove_isolated_node(self):
        # delete isolated nodes
        isolated_nodes = list()
        for node_name in self.node_map.keys():
            if len(self.get_node(node_name).inputs) == 0 or len(
                    self.get_node(node_name).outputs) == 0:
                isolated_nodes.append(node_name)

        self.remove_node(node_name)

    def _remove_identity_node(self):
        identity_node = list()
        for node_name, node in self.node_map.items():
            if node.layer_type == "Identity":
                identity_node.append(node_name)

        for node_name in identity_node:
            node = self.get_node(node_name)
            # Remind: Only 1 input for Identity node
            input_node = self.get_node(node.inputs[0])

            # remove identity node from graph
            self.identity_map[node_name] = input_node.layer_name
            idx = input_node.outputs.index(node_name)
            del input_node.outputs[idx]

            output_names = node.outputs
            for output_name in output_names:
                output_node = self.get_node(output_name)
                idx = output_node.inputs.index(node_name)
                output_node.inputs[idx] = input_node.layer_name

            idx = self.topo_sort.index(node_name)
            del self.topo_sort[idx]

J
jiangjiajun 已提交
151 152 153 154 155 156

class TFParser(object):
    def __init__(self, pb_model, in_nodes=None, out_nodes=None, in_shapes=None):
        assert in_nodes is not None, "in_nodes should not be None"
        assert out_nodes is not None, "out_nodes should not be None"
        assert in_shapes is not None, "in_shapes should not be None"
157 158
        assert len(in_shapes) == len(
            in_nodes), "length of in_shapes and in_nodes should be equal"
J
jiangjiajun 已提交
159

J
jiangjiajun 已提交
160 161 162 163 164 165
        sess = tf.Session()
        with gfile.FastGFile(pb_model, 'rb') as f:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())
            sess.graph.as_default()
            tf.import_graph_def(graph_def, name='')
166

J
jiangjiajun 已提交
167 168 169 170
        sess.run(tf.global_variables_initializer())

        self.tf_graph = TFGraph(sess.graph._as_graph_def(add_shapes=True)[0])
        self.tf_graph.build()