tf_op_mapper.py 50.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.util import *
J
jiangjiajun 已提交
18
import inspect
J
jiangjiajun 已提交
19
import numpy
J
jiangjiajun 已提交
20
import sys
21

J
jiangjiajun 已提交
22

J
jiangjiajun 已提交
23 24 25 26
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
27 28
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
29 30 31 32
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
33

J
jiangjiajun 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def nhwc_dim_to_nchw(node, dim):
    tf_data_format = list(node.tf_data_format)
    pd_data_format = list(node.pd_data_format)
    if isinstance(dim, list):
        for i in range(len(dim)):
            char = tf_data_format[dim[i]]
            dim[i] = pd_data_format.index(char)
    else:
        char = tf_data_format[dim]
        dim = pd_data_format.index(char)
    return dim

    if dim < 0:
        dim += 4
    if dim > 0:
        dim = (dim + 1) % 4 + int((dim + 1) / 4)
    return dim


J
jiangjiajun 已提交
53
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
54 55 56 57 58 59 60
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Shape': ['shape'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
61
        'Rsqrt': ['rsqrt'],
62
        'swish_f32': ['swish'],
J
jiangjiajun 已提交
63
        'Tanh': ['tanh'],
64 65 66
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
        }]
J
jiangjiajun 已提交
67 68 69 70 71 72
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
73 74
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
J
jiangjiajun 已提交
75 76
    }

J
jiangjiajun 已提交
77 78
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
79
        self.decoder = decoder
J
jiangjiajun 已提交
80
        self.graph = decoder.tf_graph
81
        self.batch_node = None
J
jiangjiajun 已提交
82
        self.weights = dict()
J
jiangjiajun 已提交
83
        self.omit_nodes = list()
J
jiangjiajun 已提交
84
        self.used_custom_layers = dict()
85

J
jiangjiajun 已提交
86 87 88 89 90 91 92
        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(name).layer_type != "Placeholder":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
93

94
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
J
jiangjiajun 已提交
95
        unsupported_ops = set()
96 97
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...    ".format(i + 1))
98 99
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
100
            if op in self.directly_map_ops:
J
jiangjiajun 已提交
101 102
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
103 104
                self.directly_map(node)
            elif op in self.elementwise_ops:
J
jiangjiajun 已提交
105 106
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
107 108
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
109 110
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
111 112
                func = getattr(self, op)
                func(node)
J
jiangjiajun 已提交
113
            else:
J
jiangjiajun 已提交
114 115
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
116 117 118
            sys.stderr.write(
                "=========={} Ops are not supported yet======\n".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
119
            for op in unsupported_ops:
120
                sys.stderr.write("========== {} ==========\n".format(op))
J
jiangjiajun 已提交
121
            sys.exit(-1)
122
        sys.stderr.write('\nDone!\n')
123

J
jiangjiajun 已提交
124 125 126 127 128 129 130 131 132
    def add_omit_nodes(self, in_node_name, out_node_name):
        in_node = self.graph.get_node(in_node_name)
        out_node = self.graph.get_node(out_node_name)
        index = in_node.outputs.index(out_node_name)
        del in_node.outputs[index]
        index = out_node.inputs.index(in_node_name)
        del out_node.inputs[index]
        self.omit_nodes.append(in_node.layer_name)

J
jiangjiajun 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_node(node.layer.input[0], copy=True)
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
        node.fluid_code.add_layer(op_info[0],
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
151 152 153 154
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
155 156 157 158
        if len(x_shape) == 0:
            x_shape = [1]
        if len(y_shape) == 0:
            y_shape = [1]
J
jiangjiajun 已提交
159 160 161 162 163 164 165 166 167 168 169 170
        # incomplement broadcasting support for paddle
        x_input = x
        y_input = y
        if len(x_shape) < len(y_shape):
            unrevertable_ops = [
                "elementwise_sub", "elementwise_div", "elementwise_floordiv",
                "elementwise_mod", "elementwise_pow"
            ]
            if op_type not in unrevertable_ops:
                x_input = y
                y_input = x
                x_shape = y.out_shapes[0]
M
modify  
mamingjie-China 已提交
171 172
                if len(x_shape) == 0:
                    x_shape = [1]
J
jiangjiajun 已提交
173
                y_shape = x.out_shapes[0]
M
modify  
mamingjie-China 已提交
174 175
                if len(y_shape) == 0:
                    y_shape = [1]
J
jiangjiajun 已提交
176
            else:
J
jiangjiajun 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                if len(x_shape) == 1 and len(y_shape) == 4 and x_shape[
                        0] == y_shape[-1] and y_shape.count(-1) < 1:
                    shape = [1, x_shape[0], 1, 1]
                    attr = {"shape": shape}
                    node.fluid_code.add_layer("reshape",
                                              inputs=x_input,
                                              output="reshape_x",
                                              param_attr=attr)
                    if y_shape[0] != 1:
                        attr = {"expand_times": [y_shape[0], 1, 1, 1]}
                        node.fluid_code.add_layer("expand",
                                                  inputs="reshape_x",
                                                  output="reshape_x",
                                                  param_attr=attr)
                    inputs = {"x": "reshape_x", "y": y_input}
                    node.fluid_code.add_layer(op_type,
                                              inputs=inputs,
                                              output=node,
                                              param_attr=None)
                    return
                else:
                    raise Exception("Unexpected situation happend")
J
jiangjiajun 已提交
199

J
jiangjiajun 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212
        if len(x_shape) == 4 and len(y_shape) == 1:
            if x_input.tf_data_format == "NHWC":
                axis = 1
            else:
                axis = -1
            attr = {"axis": axis}
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
            return

J
jiangjiajun 已提交
213 214 215 216 217 218
        is_sub_seq = True
        for i in range(len(y_shape)):
            index = -1 * i - 1
            if y_shape[index] != x_shape[index]:
                is_sub_seq = False
        if not is_sub_seq:
J
jiangjiajun 已提交
219 220 221 222
            if x_shape.count(-1) > 2:
                x_shape = self.decoder.infer_tensor_shape(x_input)
            if y_shape.count(-1) > 2:
                y_shape = self.decoder.infer_tensor_shape(y_input)
J
jiangjiajun 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            x_expand_times = [1] * len(x_shape)
            y_expand_times = [1] * len(y_shape)
            x_need_expand = False
            y_need_expand = False
            for i in range(len(y_shape)):
                index = -1 * i - 1
                if y_shape[index] != x_shape[index]:
                    if y_shape[index] == 1:
                        y_expand_times[index] = x_shape[index]
                        y_need_expand = True
                    elif x_shape[index] == 1:
                        x_expand_times[index] = y_shape[index]
                        x_need_expand = True
                    else:
                        raise Exception("Unexpected situation happend")
            if x_need_expand:
J
jiangjiajun 已提交
239 240 241 242
                if len(x_expand_times) == 3 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [2, 0, 1]]
                if len(x_expand_times) == 4 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
243 244 245 246 247 248 249
                attr = {"expand_times": x_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=x_input,
                                          output="x_tmp",
                                          param_attr=attr)
                x_input = "x_tmp"
            if y_need_expand:
J
jiangjiajun 已提交
250 251 252 253
                if len(y_expand_times) == 3 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [2, 0, 1]]
                if len(y_expand_times) == 4 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
254 255 256 257 258 259 260 261 262 263 264 265
                attr = {"expand_times": y_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=y_input,
                                          output="y_tmp",
                                          param_attr=attr)
                y_input = "y_tmp"
        inputs = {"x": x_input, "y": y_input}
        node.fluid_code.add_layer(op_type,
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

266 267
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
268 269
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
J
jiangjiajun 已提交
270 271 272 273
        if node.tf_data_format == "NHWC" and len(shape) == 4:
            shape = [shape[i] for i in [0, 3, 1, 2]]
        elif node.tf_data_format == "NCHW" and len(shape) == 4:
            self.graph.data_format_propagation(node)
274 275
        dtype = node.dtype
        attr = {
J
jiangjiajun 已提交
276
            'dtype': string(dtype),
277
            'shape': shape,
J
jiangjiajun 已提交
278 279
            'name': string(node.layer_name),
            'append_batch_size': False
280
        }
281 282 283
        if shape[0] < 0:
            self.batch_node = node

J
jiangjiajun 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311
        self.weights[node.layer_name] = node.value

        if node.tf_data_format == "NHWC":
            if len(shape) == 4:
                shape = [shape[i] for i in [0, 3, 1, 2]]
            if len(shape) == 3:
                shape = [shape[i] for i in [2, 0, 1]]
                self.weights[node.layer_name] = numpy.transpose(
                    node.value, (2, 0, 1))
        elif node.tf_data_format == "NCHW":
            if len(shape) == 4:
                self.graph.data_format_propagation(node)

J
jiangjiajun 已提交
312 313 314 315 316 317 318 319 320 321 322 323
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
J
jiangjiajun 已提交
324 325
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
326
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
327
        del self.weights[perm.layer_name.replace('/', '_')]
J
jiangjiajun 已提交
328 329 330
        perm.fluid_code.clear()
        perm = perm.value.tolist()

J
jiangjiajun 已提交
331
        if perm == [0, 3, 1, 2] and input.data_format == "NHWC":
332 333 334 335 336
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
337 338 339
            node.tf_data_format = "NCHW"
            self.graph.data_format_propagation(node)
        elif perm == [0, 2, 3, 1] and input.tf_data_format == "NCHW":
340 341 342 343 344
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            node.tf_data_format = "NHWC"
            self.graph.data_format_propagation(node)
        elif len(input.out_shapes[0]) > 4:
            tf_data_format = list(input.tf_data_format)
            pd_data_format = list(input.pd_data_format)
            new_perm = [i for i in range(len(perm))]
            for i in range(len(perm)):
                char0 = tf_data_format[i]
                char1 = tf_data_format[perm[i]]
                index0 = pd_data_format.index(char0)
                index1 = pd_data_format.index(char1)
                new_perm[index0] = index1
            node.tf_data_format = [tf_data_format[i] for i in perm]
            node.pd_data_format = [pd_data_format[i] for i in perm]
            attr = {'perm': new_perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        elif len(node.out_shapes[0]) != 4:
            attr = {'perm': perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            raise Exception("Unexpected situation happend in Transpose OP")
J
jiangjiajun 已提交
372

J
jiangjiajun 已提交
373 374
    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
375

J
jiangjiajun 已提交
376
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
377 378 379
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
380 381 382 383
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
384
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
385
        padding = 0
J
jiangjiajun 已提交
386

J
jiangjiajun 已提交
387
        if not channel_first:
J
jiangjiajun 已提交
388 389
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
390
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
391 392
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
393 394

        if pad_mode == "SAME":
J
jiangjiajun 已提交
395 396
            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
J
jiangjiajun 已提交
397 398
            pad_h = pad_h[0] + pad_h[1]
            pad_w = pad_w[0] + pad_w[1]
J
jiangjiajun 已提交
399 400 401 402 403 404 405
            if pad_h != 0 or pad_w != 0:
                attr = {"paddings": [0, pad_h, 0, pad_w], "pad_value": -10000.0}
                node.fluid_code.add_layer("pad2d",
                                          inputs=input,
                                          output=node,
                                          param_attr=attr)
                input = node
J
jiangjiajun 已提交
406
        attr = {
J
jiangjiajun 已提交
407
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
408
            "pool_type": string("max"),
J
jiangjiajun 已提交
409
            "pool_padding": padding,
J
jiangjiajun 已提交
410
            "pool_stride": strides[2:4]
J
jiangjiajun 已提交
411
        }
J
jiangjiajun 已提交
412 413 414 415
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
416 417 418 419 420

    def Conv2D(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2D should be Const"
J
jiangjiajun 已提交
421
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
422

J
jiangjiajun 已提交
423
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
424 425
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
426
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
427 428 429
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
430 431 432 433 434
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
435 436 437 438
        padding = 0

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
439 440 441 442 443

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
444 445
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
446

J
jiangjiajun 已提交
447 448 449
        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
J
jiangjiajun 已提交
450 451 452 453 454 455 456 457 458
            if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
                padding = [pad_h[0], pad_w[0]]
            else:
                attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
                node.fluid_code.add_layer("pad2d",
                                          inputs=input,
                                          output=node,
                                          param_attr=attr)
                input = node
J
jiangjiajun 已提交
459 460 461 462 463 464
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
465 466
            "dilation": dilations[2:4],
            "padding": padding
J
jiangjiajun 已提交
467
        }
J
jiangjiajun 已提交
468 469 470 471
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
472

J
jiangjiajun 已提交
473 474 475 476 477 478 479 480 481 482 483 484
    def BiasAdd(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        bias = self.graph.get_node(node.layer.input[1], copy=True)
        axis = -1
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = 1
        inputs = {"x": input, "y": bias}
        attr = {"axis": axis}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
485 486 487 488 489 490 491

    def FusedBatchNorm(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        gamma = self.graph.get_node(node.layer.input[1], copy=True)
        beta = self.graph.get_node(node.layer.input[2], copy=True)
        moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
        moving_var = self.graph.get_node(node.layer.input[4], copy=True)
J
jiangjiajun 已提交
492 493
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
494 495 496 497 498

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
499 500 501 502
        self.add_omit_nodes(gamma.layer_name, node.layer_name)
        self.add_omit_nodes(beta.layer_name, node.layer_name)
        self.add_omit_nodes(moving_mean.layer_name, node.layer_name)
        self.add_omit_nodes(moving_var.layer_name, node.layer_name)
J
jiangjiajun 已提交
503 504
        if channel_first:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
505

J
jiangjiajun 已提交
506 507 508 509 510 511 512 513 514 515
        attr = {
            "epsilon": node.get_attr("epsilon"),
            "param_attr": string(gamma.layer_name),
            "bias_attr": string(beta.layer_name),
            "moving_mean_name": string(moving_mean.layer_name),
            "moving_variance_name": string(moving_var.layer_name),
            "is_test": True
        }

        node.fluid_code.add_layer("batch_norm",
J
jiangjiajun 已提交
516
                                  inputs=input,
J
jiangjiajun 已提交
517 518 519 520 521 522 523
                                  output=node,
                                  param_attr=attr)

    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
524
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
525

J
jiangjiajun 已提交
526
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
527 528
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
529
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
530 531 532
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
533 534 535 536 537
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
538 539 540 541
        padding = 0

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
542 543 544 545 546

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
547 548
        else:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
549 550 551 552

        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
J
jiangjiajun 已提交
553 554 555 556
            if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
                padding = [pad_h[0], pad_w[0]]
            else:
                attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
J
jiangjiajun 已提交
557
                node.fluid_code.add_layer("pad2d",
J
jiangjiajun 已提交
558
                                          inputs=input,
J
jiangjiajun 已提交
559 560
                                          output=node,
                                          param_attr=attr)
J
jiangjiajun 已提交
561 562
                input = node

J
jiangjiajun 已提交
563 564 565 566 567 568 569
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": in_shape[1],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
J
jiangjiajun 已提交
570
            "groups": k_size[3] * in_shape[1],
J
jiangjiajun 已提交
571
            "use_cudnn": False,
J
jiangjiajun 已提交
572
            "padding": padding
J
jiangjiajun 已提交
573
        }
J
jiangjiajun 已提交
574
        node.fluid_code.add_layer("conv2d",
J
jiangjiajun 已提交
575
                                  inputs=input,
J
jiangjiajun 已提交
576 577
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
578

J
jiangjiajun 已提交
579 580 581
    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        param = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
582
        is_variable = False
J
jiangjiajun 已提交
583 584
        if param.layer_type == "Const":
            attr = {"shape": param.value.tolist()}
J
jiangjiajun 已提交
585
            self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
586 587
        else:
            # Here is a trick method to solove tensor parameter in tensorflow
J
jiangjiajun 已提交
588 589 590
            shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
            if shape.count(-1) <= 1:
                attr = {"shape": shape}
J
jiangjiajun 已提交
591 592 593 594 595
                self.add_omit_nodes(param.layer_name, node.layer_name)
            elif shape.count(-1) == 2 and shape[0] == -1:
                shape[0] = 0
                attr = {"shape": shape}
                self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
            else:
                assert len(param.out_shapes[0]
                           ) == 1, "Unexpected situation of shape parameter"
                attr = {"shape": [-1]}
                node.fluid_code.add_layer("reshape",
                                          inputs=param,
                                          output="shape_param",
                                          param_attr=attr)
                attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
                node.fluid_code.add_layer("split",
                                          inputs="shape_param",
                                          output=node,
                                          param_attr=attr)
                new_param = "["
                for i in range(param.out_shapes[0][0]):
                    new_param += (node.layer_name + "[{}]".format(i) + ", ")
                new_param = new_param.strip(", ") + "]"
                attr = {"shape": new_param}
J
jiangjiajun 已提交
614 615 616 617 618
                is_variable = True

        # to change [192, -1]->[-1, 192], allways put -1 in the first dimension
        # optimization for Paddle-Lite
        in_shape = input.out_shapes[0]
J
fix bug  
jiangjiajun 已提交
619
        if not is_variable and in_shape.count(-1) < 1:
J
jiangjiajun 已提交
620 621 622 623 624 625 626 627 628 629 630 631
            total_size = 1
            for i in range(len(in_shape)):
                total_size *= in_shape[i]
            for i in range(len(attr["shape"])):
                if attr["shape"][i] == 0:
                    attr["shape"][i] = in_shape[i]
                if attr["shape"][i] != -1:
                    total_size /= attr["shape"][i]
            if attr["shape"].count(-1) > 0:
                index = attr["shape"].index(-1)
                attr["shape"][index] = int(total_size)
                attr["shape"][0] = -1
632 633 634 635 636 637 638 639 640 641 642 643 644 645

        if len(input.out_shapes[0]) == 4 and node.tf_data_format == "NHWC":
            if len(attr["shape"]) < 3:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                return

J
jiangjiajun 已提交
646
        if len(attr["shape"]) == 4 and node.tf_data_format == "NHWC":
J
jiangjiajun 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
            input_shape = self.decoder.infer_tensor(input).shape
            if input_shape[1] == attr["shape"][1]:
                attr["shape"] = [attr["shape"][i] for i in [0, 3, 1, 2]]
            else:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                perm = {"perm": [0, 3, 1, 2]}
                node.fluid_code.add_layer("transpose",
                                          inputs=node,
                                          output=node,
                                          param_attr=perm)
                return
J
jiangjiajun 已提交
666 667 668 669 670 671 672
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def AvgPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
673

J
jiangjiajun 已提交
674
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
675 676 677
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
678 679 680 681 682 683 684 685 686
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
687
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
688 689
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
690 691

        attr = {
J
jiangjiajun 已提交
692
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
693 694 695 696
            "pool_type": string("avg"),
            "pool_stride": strides[2:4]
        }
        if pad_mode == "SAME":
J
jiangjiajun 已提交
697 698
            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
J
jiangjiajun 已提交
699 700 701 702
            assert pad_h[0] == pad_h[1] and pad_w[0] == pad_w[
                1], "Cannot map AvgPool"
            attr["pool_padding"] = [pad_h[0], pad_w[0]]
        node.fluid_code.add_layer("pool2d",
J
jiangjiajun 已提交
703
                                  inputs=input,
J
jiangjiajun 已提交
704 705 706
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
707 708 709 710 711 712
    def SplitV(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        num_sections = self.graph.get_node(node.layer.input[1], copy=True)
        dim = self.graph.get_node(node.layer.input[2], copy=True)
        assert num_sections.layer_type == "Const"
        assert dim.layer_type == "Const"
J
jiangjiajun 已提交
713 714
        self.add_omit_nodes(num_sections.layer_name, node.layer_name)
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
715 716 717
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)
J
jiangjiajun 已提交
718 719 720 721 722 723 724 725
        attr = {
            "num_or_sections": num_sections.value.tolist(),
            "dim": dim.value
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
726 727

    def ConcatV2(self, node):
J
jiangjiajun 已提交
728 729 730 731
        inputs = [
            self.graph.get_node(name, copy=True)
            for name in node.layer.input[:-1]
        ]
J
jiangjiajun 已提交
732 733
        axis = self.graph.get_node(node.layer.input[-1], copy=True)
        assert axis.layer_type == "Const"
J
jiangjiajun 已提交
734
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
735 736 737 738 739
        axis = axis.value
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(inputs[0], axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
740 741 742 743
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
744 745 746 747

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
748
        self.add_omit_nodes(expand_times.layer_name, node.layer_name)
749 750 751 752
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
        else:
            expand_times = self.decoder.infer_shape_tensor(expand_times)
J
jiangjiajun 已提交
753 754 755 756 757
        if input.tf_data_format == "NHWC":
            if len(input.out_shapes[0]) == 4:
                expand_times = [expand_times[i] for i in [0, 3, 1, 2]]
            elif len(input.out_shape[0]) == 3:
                expand_times = [expand_times[i] for i in [2, 0, 1]]
758 759 760 761
        for i in range(len(expand_times)):
            if expand_times[i] < 0:
                expand_times[i] = 1

J
jiangjiajun 已提交
762
        attr = {"expand_times": expand_times}
J
jiangjiajun 已提交
763 764 765 766
        node.fluid_code.add_layer("expand",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
767 768

    def Pack(self, node):
J
jiangjiajun 已提交
769 770 771
        inputs = [
            self.graph.get_node(name, copy=True) for name in node.layer.input
        ]
J
jiangjiajun 已提交
772 773 774 775 776 777 778 779 780 781 782 783
        axis = node.get_attr("axis")
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            tf_data_format = list(inputs[0].tf_data_format)
            tf_data_format.insert(axis, str(len(tf_data_format)))
            axis = nhwc_dim_to_nchw(inputs[0], axis)
            pd_data_format = list(inputs[0].pd_data_format)
            pd_data_format.insert(axis, str(len(pd_data_format)))
            node.tf_data_format = "".join(tf_data_format)
            node.pd_data_format = "".join(pd_data_format)

        attr = {"axis": axis}
J
jiangjiajun 已提交
784 785 786
        node.fluid_code.add_layer("stack",
                                  inputs=inputs,
                                  output=node,
J
jiangjiajun 已提交
787
                                  param_attr=attr)
J
jiangjiajun 已提交
788 789 790

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
791
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
792
        assert paddings.layer_type == "Const", "Padding should be Const"
J
jiangjiajun 已提交
793
        self.add_omit_nodes(paddings.layer_name, node.layer_name)
J
jiangjiajun 已提交
794 795 796
        paddings = paddings.value.flatten().tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]]
J
jiangjiajun 已提交
797 798 799 800 801 802

        pad_op = "pad"
        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
                paddings = paddings[4:]
                pad_op = "pad2d"
J
jiangjiajun 已提交
803
        attr = {"paddings": paddings}
J
jiangjiajun 已提交
804
        node.fluid_code.add_layer(pad_op,
J
jiangjiajun 已提交
805 806 807
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
808 809 810 811 812

    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
M
mamingjie-China 已提交
813 814 815
        self.add_omit_nodes(start.layer_name, node.layer_name)
        self.add_omit_nodes(limit.layer_name, node.layer_name)
        self.add_omit_nodes(delta.layer_name, node.layer_name)
J
jiangjiajun 已提交
816 817
        if start.layer_type == "Const":
            start = start.value
818 819
        else:
            start = self.decoder.infer_tensor(start)
J
jiangjiajun 已提交
820 821
        if limit.layer_type == "Const":
            limit = limit.value
822 823
        else:
            limit = self.decoder.infer_tensor(limit)
J
jiangjiajun 已提交
824 825
        if delta.layer_type == "Const":
            delta = delta.value
826 827 828
        else:
            delta = self.decoder.infer_tensor(delta)

J
jiangjiajun 已提交
829
        inputs = {"start": start, "end": limit, "step": delta}
J
jiangjiajun 已提交
830
        attr = {"dtype": string(node.dtype)}
831 832 833 834
        node.fluid_code.add_layer("range",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
J
jiangjiajun 已提交
835 836 837 838 839

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
J
jiangjiajun 已提交
840
        dims = reduce_idx.value.tolist()
J
jiangjiajun 已提交
841
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
842 843 844 845 846 847

        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(dims)):
                dims[i] = nhwc_dim_to_nchw(input, dims[i])

        attr = {"dim": dims, "keep_dim": keep_dims}
J
jiangjiajun 已提交
848 849 850 851 852 853 854 855 856 857 858
        node.fluid_code.add_layer("reduce_mean",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        inputs = {"x": x, "y": y}
J
jiangjiajun 已提交
859 860 861 862 863 864 865 866 867 868
        # fix paddle shape infer problem
        # should be removed after paddle 1.6
        if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
            shape = x.out_shapes[0]
            shape[-1] = y.out_shapes[0][0]
            attr = {"shape": shape}
            node.fluid_code.add_layer("reshape",
                                      inputs=x,
                                      output=x,
                                      param_attr=attr)
J
jiangjiajun 已提交
869 870 871 872 873 874 875 876 877 878
        attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = self.graph.get_node(node.layer.input[1], copy=True)
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
J
jiangjiajun 已提交
879
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
880 881 882 883
        axis = axis.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896
        node.fluid_code.add_layer("argmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        end = self.graph.get_node(node.layer.input[2], copy=True)
        strides = self.graph.get_node(node.layer.input[3], copy=True)
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
J
jiangjiajun 已提交
897 898 899
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(end.layer_name, node.layer_name)
        self.add_omit_nodes(strides.layer_name, node.layer_name)
J
jiangjiajun 已提交
900 901 902
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[0] == 1

J
jiangjiajun 已提交
903 904 905 906 907 908
        begin = begin.value.tolist()
        end = end.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            begin = [begin[i] for i in [0, 3, 1, 2]]
            end = [end[i] for i in [0, 3, 1, 2]]

J
jiangjiajun 已提交
909 910 911 912 913 914 915 916 917
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        attr = {
            "axes": [i for i in range(len(strides))],
            "starts": begin,
            "ends": end
        }
J
jiangjiajun 已提交
918 919 920 921
        node.fluid_code.add_layer("slice",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
922 923 924 925 926

    def Slice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        size = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
927 928
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(size.layer_name, node.layer_name)
J
jiangjiajun 已提交
929 930 931 932 933 934 935 936
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
            begin = self.decoder.infer_tensor(begin).tolist()
        if size.layer_type == "const":
            size = size.value.tolist()
        else:
            size = self.decoder.infer_tensor(size).tolist()
937

J
jiangjiajun 已提交
938 939 940 941
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            size = [size[i] for i in [0, 3, 1, 2]]
            begin = [begin[i] for i in [0, 3, 1, 2]]

942 943 944 945 946 947 948 949 950 951 952 953
        for i in range(len(size)):
            if size[i] < 0:
                size[i] = 99999999
            else:
                size[i] = size[i] + begin[i]

        attr = {
            "axes": [i for i in range(len(size))],
            "starts": begin,
            "ends": size
        }
        node.fluid_code.add_layer("slice",
J
jiangjiajun 已提交
954 955 956
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
957 958

    def Conv2DBackpropInput(self, node):
959
        out_shape = self.graph.get_node(node.layer.input[0], copy=True)
960
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
961 962
        input = self.graph.get_node(node.layer.input[2], copy=True)

963
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
964

J
jiangjiajun 已提交
965
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
966 967
        self.add_omit_nodes(out_shape.layer_name, node.layer_name)

J
jiangjiajun 已提交
968 969 970 971 972 973
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])

974
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
975 976
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
977
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
978 979 980
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
981
        pad_mode = node.get_attr("padding").decode()
982 983 984 985
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
986

J
jiangjiajun 已提交
987 988
        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
989 990 991 992
        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
993 994
        else:
            self.data_format_propagation(node)
995

J
jiangjiajun 已提交
996
        padding = 0
997 998 999
        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
J
jiangjiajun 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008
            if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
                padding = [pad_h[0], pad_w[0]]
            else:
                attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
                node.fluid_code.add_layer("pad2d",
                                          inputs=input,
                                          output=node,
                                          param_attr=attr)
                input = node
1009

1010 1011 1012
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
M
mamingjie-China 已提交
1013
            "num_filters": k_size[2],
1014 1015
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
1016 1017
            "dilation": dilations[2:4],
            "padding": padding
1018
        }
1019 1020 1021 1022
        node.fluid_code.add_layer("conv2d_transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1023

J
jiangjiajun 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        if pad_mode == "SAME":
            if node.tf_data_format == "NHWC":
                out_shape = [out_shape[i] for i in [0, 3, 1, 2]]
            for i in range(4):
                if out_shape[i] < 0:
                    out_shape[i] = 999999
            attr = {
                "axes": [0, 1, 2, 3],
                "starts": [0, 0, 0, 0],
                "ends": out_shape
            }
            node.fluid_code.add_layer("slice",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

1040 1041 1042 1043 1044
    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1045 1046 1047 1048 1049
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        node.fluid_code.add_layer("reduce_max",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1060 1061 1062 1063 1064
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
1065 1066 1067 1068 1069
        node.fluid_code.add_layer("reduce_sum",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
1070 1071 1072 1073 1074 1075 1076 1077
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        dtype = node.dtype_map[node.get_attr('DstT')]
        attr = {"dtype": string(dtype)}
        node.fluid_code.add_layer("cast",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1078

J
jiangjiajun 已提交
1079 1080 1081
    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0], copy=True)
        input = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1082
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
1083
        num_split = node.get_attr('num_split')
J
jiangjiajun 已提交
1084 1085 1086 1087 1088
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"num_or_sections": num_split, "dim": dim}
J
jiangjiajun 已提交
1089 1090 1091 1092
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(squeeze_dims)):
                squeeze_dims[i] = nhwc_dim_to_nchw(input, squeeze_dims[i])
        attr = {"axes": squeeze_dims}
        node.fluid_code.add_layer("squeeze",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr("axis")
J
jiangjiajun 已提交
1109 1110
        if axis is None:
            axis = -1 + len(input.out_shapes[0])
J
jiangjiajun 已提交
1111 1112 1113 1114 1115 1116 1117
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
        node.fluid_code.add_layer("softmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1118

1119 1120 1121
    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1122
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {"align_corners": align_corners, "out_shape": resize_shape}
        node.fluid_code.add_layer("resize_nearest",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1138
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {
            "align_corners": align_corners,
            "out_shape": resize_shape,
            "align_mode": 1
        }
        node.fluid_code.add_layer("resize_bilinear",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1154 1155

    def GreaterEqual(self, node):
J
jiangjiajun 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("greater_equal",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0], copy=True)
        self.add_omit_nodes(shape.layer_name, node.layer_name)
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
        else:
            shape = self.decoder.infer_shape_tensor(shape)
        if len(shape) == 4 and node.tf_data_format == "NHWC":
            shape = [shape[i] for i in [0, 3, 1, 2]]
        attr = {"shape": shape, "min": 0.0, "max": 0.9999}
        if shape[0] < 0:
            input = self.batch_node
            node.fluid_code.add_layer("uniform_random_batch_size_like",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            node.fluid_code.add_layer("uniform_random",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
J
jiangjiajun 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

    def SquaredDifference(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("elementwise_sub",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
        inputs = {"x": node, "y": node}
        node.fluid_code.add_layer("elementwise_mul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)