caffe_shape_inference.py 14.7 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
# limitations under the License.
S
SunAhong1993 已提交
14 15 16 17 18 19 20 21

import math
import numbers
from functools import reduce


def get_kernel_parameters(params):
    [k_h, k_w] = [1, 1]
22 23 24 25
    if params.kernel_h > 0 or params.kernel_w > 0:
        k_h = params.kernel_h
        k_w = params.kernel_w
    elif isinstance(params.kernel_size, numbers.Number):
S
SunAhong1993 已提交
26 27 28 29 30 31
        [k_h, k_w] = [params.kernel_size] * 2
    elif len(params.kernel_size) > 0:
        k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[0]
        k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
            len(params.kernel_size) - 1]
    [s_h, s_w] = [1, 1]
32 33 34 35
    if params.stride_h > 0 or params.stride_w > 0:
        s_h = params.stride_h
        s_w = params.stride_w
    elif isinstance(params.stride, numbers.Number):
S
SunAhong1993 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        [s_h, s_w] = [params.stride] * 2
    elif len(params.stride) > 0:
        s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
        s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
            params.stride) - 1]
    [p_h, p_w] = [0, 0]
    if isinstance(params.pad, numbers.Number):
        [p_h, p_w] = [params.pad] * 2
    elif len(params.pad) > 0:
        p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
        p_w = params.pad_w if params.pad_w > 0 else params.pad[len(params.pad) -
                                                               1]
    elif params.pad_h > 0 or params.pad_w > 0:
        p_h = params.pad_h
        p_w = params.pad_w
    dila_h = dila_w = 1
    if hasattr(params, 'dilation'):
        dila_len = len(params.dilation)
        if dila_len == 2:
            dila_h = params.dilation[0]
            dila_w = params.dilation[1]
        elif dila_len == 1:
            dila_h = dila_w = params.dilation[0]
        else:
            assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                dila_len)
    return dila_h, dila_w, p_h, p_w, k_h, k_w, s_h, s_w


def get_strided_kernel_output_shape(params, input_shape, round_func):
    i_h = input_shape[2]
    i_w = input_shape[3]
    dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_kernel_parameters(
        params)
    o_h = (i_h + 2 * pad_h - (dila_h *
                              (kernel_h - 1) + 1)) / float(stride_h) + 1
    o_w = (i_w + 2 * pad_w - (dila_w *
                              (kernel_w - 1) + 1)) / float(stride_w) + 1
    o_h = int(round_func(o_h))
    o_w = int(round_func(o_w))
    has_c_o = hasattr(params, 'num_output')
    c = params.num_output if has_c_o else input_shape[1]
    return [[input_shape[0], c, o_h, o_w]]


def shape_convolution(layer, input_shape):
    params = layer.convolution_param
    return get_strided_kernel_output_shape(params, input_shape[0], math.floor)


S
fix  
SunAhong1993 已提交
86 87 88 89
def shape_depthwiseconvolution(layer, input_shape):
    return shape_convolution(layer, input_shape)


S
SunAhong1993 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
def shape_deconvolution(layer, input_shape):

    h_i = input_shape[0][2]
    w_i = input_shape[0][3]

    params = layer.convolution_param
    dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_kernel_parameters(
        params)

    h_o = (h_i - 1) * stride_h - 2 * pad_h + dila_h * (kernel_h - 1) + 1
    w_o = (w_i - 1) * stride_w - 2 * pad_w + dila_w * (kernel_w - 1) + 1

    has_c_o = hasattr(params, 'num_output')
    c = params.num_output if has_c_o else input_shape.channels
    return [[input_shape[0][0], c, h_o, w_o]]


def shape_pooling(layer, input_shape):
    params = layer.pooling_param
    global_pool = getattr(params, 'global_pooling', False)
    if global_pool:
        return [[input_shape[0][0], input_shape[0][1], 1, 1]]

    ceil_mode = getattr(params, 'ceil_mode', True)
    if ceil_mode is True:
        method = math.ceil
    else:
        method = math.floor
S
SunAhong1993 已提交
118 119 120 121 122 123
    if not hasattr(params, 'ceil_mode'):
        round_mode = getattr(params, 'round_mode', 0)
        if round_mode == 1:
            method = math.floor
        else:
            method = math.ceil
S
SunAhong1993 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    return get_strided_kernel_output_shape(params, input_shape[0], method)


def shape_convolutiondepthwise(layer, input_shape):
    params = layer.convolution_param
    return get_strided_kernel_output_shape(params, input_shape[0], math.floor)


def shape_innerproduct(layer, input_shape):
    params = layer.inner_product_param
    return [[input_shape[0][0], params.num_output]]


def shape_lrn(layer, input_shape):
    return input_shape


def shape_relu(layer, input_shape):
    return input_shape


def shape_softmax(layer, input_shape):
    return input_shape


def shape_input(layer, input_shape):
    return [list(layer.input_param.shape[0].dim)]


def shape_memorydata(layer, input_shape):
    params = layer.memory_data_param
    shape = []
    shape.append(int(params.batch_size))
    shape.append(int(params.channels))
    shape.append(int(params.height))
    shape.append(int(params.width))
    return [shape]


def shape_concat(layer, input_shape):
    params = layer.concat_param
    axis = params.axis
    output_shape = None
    for shape in input_shape:
        if output_shape is None:
            output_shape = []
            for i in range(len(shape)):
                output_shape.append(shape[i])
        else:
            output_shape[axis] += shape[axis]
    return [output_shape]


def shape_slice(layer, input_shape):
    inshape = input_shape[0]

    top_len = len(layer.top)
    params = layer.slice_param
    axis = params.axis
    slice_dim = params.slice_dim
    if slice_dim != 1 and axis == 1:
        axis = slice_dim
    points = list(params.slice_point)
    count = inshape[axis]
    if len(points) == 0:
        assert count % top_len == 0, "the parameter of Slice is wrong"
        part = count / top_len
        t = part
        while t < count:
            points.append(int(t))
            t += part
    points = [0] + points + [count]
    output_shape = []
    for i in range(len(points)):
        shape = []
        for ii in range(len(inshape)):
            shape.append(inshape[ii])
        size = points[i + 1] - points[i]
        shape[axis] = size
        output_shape.append(shape)
        if i == len(points) - 2:
            break
    return output_shape


def shape_prelu(layer, input_shape):
    return input_shape


def shape_sigmoid(layer, input_shape):
    return input_shape


def shape_absval(layer, input_shape):
    return input_shape


def shape_accuracy(layer, input_shape):
    return [[1]]


def shape_tanh(layer, input_shape):
    return input_shape


def shape_eltwise(layer, input_shape):
    return [input_shape[0]]


def shape_batchnorm(layer, input_shape):
    return input_shape


def shape_scale(layer, input_shape):
    return input_shape


def shape_reshape(layer, input_shape):
    def count(num_list):
        return reduce(lambda a, b: a * b, num_list)

    inshape = input_shape[0]
    params = layer.reshape_param
    axis = params.axis if hasattr(params, 'axis') else 0
    num_axes = params.num_axes if hasattr(params, 'num_axes') else -1
S
SunAhong1993 已提交
249
    is_unknow_batch = False
S
SunAhong1993 已提交
250
    if inshape[0] == -1:
S
SunAhong1993 已提交
251
        is_unknow_batch = True
S
SunAhong1993 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        inshape[0] = 1
    input_count = count(inshape)

    input_num_axes = len(inshape)

    input_start_axis = axis
    start_axis = input_start_axis if input_start_axis >= 0 \
            else input_num_axes + input_start_axis + 1

    assert start_axis >= 0, "[Reshape]axis %d out of range" % (input_start_axis)
    assert start_axis <= input_num_axes, "[Reshape]axis %d out of range for %d-D input data"\
            % (input_start_axis, input_num_axes)

    assert num_axes >= -1, "[Reshape]num_axes must be >= 0, or -1 for all"

    end_axis = input_num_axes if num_axes == -1 else start_axis + num_axes
    assert end_axis <= input_num_axes, "end_axis[%d] = axis[%d] + num_axes[%d] is out of range"\
            % (end_axis, start_axis, num_axes)

    num_axes_replaced = end_axis - start_axis
    num_axes_retained = input_num_axes - num_axes_replaced
    num_new_axes = len(list(params.shape.dim))
    output_shape = []

    for i in range(start_axis):
        output_shape.append(inshape[i])

    for i in range(num_new_axes):
        output_shape.append(params.shape.dim[i])

    for i in range(end_axis, input_num_axes):
        output_shape.append(inshape[i])

    assert len(output_shape) == num_axes_retained + num_new_axes,\
            "[Reshape]invalid dims of output shape[%s]" % (str(output_shape))

    inferred_axis = -1
    copy_axes = []
    constant_count = 1
    for i in range(num_new_axes):
        top_dim = params.shape.dim[i]
        if top_dim == 0:
            copy_axes.append(i)
            copy_axis_index = start_axis + i
            output_shape[copy_axis_index] = inshape[copy_axis_index]
        elif top_dim == -1:
            assert inferred_axis == -1, "[Reshape]new shape contains multiple -1 dims"
            inferred_axis = i
        else:
            constant_count *= top_dim

    if inferred_axis >= 0:
        explicit_count = constant_count
        l = inshape[0:start_axis]
        if len(l) > 0:
            explicit_count *= count(l)
        l = inshape[end_axis:]
        if len(l) > 0:
            explicit_count *= count(l)
        for i in range(len(copy_axes)):
            explicit_count *= output_shape[start_axis + copy_axes[i]]
        assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\
                "must be divisible by product of the specified dimensions[%d] "\
                % (input_count, explicit_count)
316 317
        output_shape[start_axis + inferred_axis] = int(input_count /
                                                       explicit_count)
S
SunAhong1993 已提交
318 319 320 321

    output_count = count(output_shape)
    assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % (
        output_count, input_count)
S
SunAhong1993 已提交
322 323
    if is_unknow_batch:
        output_shape[0] = -1
S
SunAhong1993 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    return [output_shape]


def shape_argmax(layer, input_shape):
    inshape = input_shape[0]
    params = layer.argmax_param
    out_max_val = params.out_max_val if hasattr(params, out_max_val) else False
    top_k = params.top_k if hasattr(params, top_k) else 1
    axis = parmas.axis if hasattr(params, axis) else -1
    if axis < 0:
        axis += len(inshape)
    assert (axis + 1 == len(inshape)
            ), 'only can be applied on the last dimension[axis:%d, %s] now,'\
                    'make sure you have set axis param in xxx.prototxt file' \
                    % (axis, str(inshape))

    output_shape = inshape
    output_shape[-1] = top_k
    if out_max_val is True:
        output_shape[-1] *= 2
    return [output_shape]


def shape_crop(layer, input_shape):
    assert len(input_shape) == 2, "the number of crop's inputs must be 2"
    return [input_shape[1]]


def shape_flatten(layer, input_shape):
    assert len(input_shape) == 1, "the number of flatten's inputs must be 1"
    inshape = input_shape[0]
    params = layer.flatten_param
    start_axis = params.axis
    end_axis = params.end_axis
    if start_axis < 0:
        start_axis += len(inshape)
    if end_axis < 0:
        end_axis += len(inshape) + 1
    assert start_axis <= end_axis, 'invalid axis[%d] or end_axis[%d] params'\
            % (start_axis, end_axis)
    output_shape = inshape[0:start_axis]
    if len(inshape[start_axis:end_axis]) != 0:
        flat_sz = reduce(lambda a, b: a * b, inshape[start_axis:end_axis])
        output_shape += [flat_sz]
    output_shape += inshape[end_axis:len(inshape)]
    output_shape[0] = -1
    return [output_shape]


def shape_power(layer, input_shape):
    return input_shape


def shape_reduction(layer, input_shape):
    params = layer.reduction_param
    axis = params.axis
    if axis < 0:
        axis += len(input_shape[0]) + 1
    assert axis <= len(input_shape[0]), 'invalid axis[%d] error' % (axis)
    return [input_shape[0:axis]]

385 386

def shape_axpy(layer, input_shapes):
S
SunAhong1993 已提交
387 388 389 390 391 392 393 394
    assert len(input_shapes) == 3, "not valid input shape for axpy layer"
    assert len(input_shapes[0]) == len(input_shapes[1]), 'should have same dims'
    output_shape = input_shapes[1]
    assert (input_shapes[2] == output_shape),\
            "shape not consistent for axpy[%s <--> %s]" \
            % (str(output_shape), str(input_shapes[2]))
    return [output_shape]

395

S
SunAhong1993 已提交
396 397 398
def shape_detectionoutput(layer, input_shape):
    return [[-1, 6]]

399

S
SunAhong1993 已提交
400 401 402
def shape_normalize(layer, input_shape):
    return input_shape

403

S
SunAhong1993 已提交
404 405
def shape_permute(layer, input_shape):
    order = layer.permute_param.order
S
SunAhong1993 已提交
406 407 408 409 410 411 412 413
    inshape = input_shape[0]
    output_shape = []
    order = list(order)
    for ii in order:
        assert ii < len(inshape), "invalid order for permute[%s]" % (name)
        output_shape.append(inshape[ii])
    return [output_shape]

414

S
SunAhong1993 已提交
415 416 417
def shape_priorbox(layer, input_shape):
    max_size = layer.prior_box_param.max_size
    aspect_ratio = layer.prior_box_param.aspect_ratio
S
SunAhong1993 已提交
418 419 420 421 422 423 424 425 426 427
    fc_shape = input_shape[0]
    N = 1
    if not max_size == None:
        N += 1
    if not aspect_ratio == None:
        N += 2 * len(aspect_ratio)
    N_bbx = fc_shape[2] * fc_shape[3] * N
    output_shape = [1, 2, 4 * N_bbx]
    return [output_shape]

428

S
SunAhong1993 已提交
429 430 431
def shape_relu6(layer, input_shape):
    return input_shape

432 433

def shape_roipooling(layer, input_shapes):
S
SunAhong1993 已提交
434 435
    pooled_w = layer.roi_pooling_param.pooled_w
    pooled_h = layer.roi_pooling_param.pooled_h
S
SunAhong1993 已提交
436 437 438 439 440 441 442 443
    base_fea_shape = input_shapes[0]
    rois_shape = input_shapes[1]
    output_shape = base_fea_shape
    output_shape[0] = rois_shape[0]
    output_shape[2] = pooled_h
    output_shape[3] = pooled_w
    return [output_shape]

444

S
SunAhong1993 已提交
445 446 447
def shape_shufflechannel(layer, input_shape):
    return input_shape

448 449

def shape_upsample(layer, input_shapes):
S
SunAhong1993 已提交
450
    scale = layer.upsample_param.scale
S
SunAhong1993 已提交
451 452 453 454 455 456 457 458 459
    assert len(input_shapes) == 1, "not valid input shape for upsample layer"
    assert type(scale) is int
    input_shape = input_shapes[0]
    new_h = scale * input_shape[2]
    new_w = scale * input_shape[3]

    output_shape = [input_shape[0], input_shape[1], new_h, new_w]
    return [output_shape]

460 461

def shape_select(layer, input_shapes):
S
SunAhong1993 已提交
462 463
    slice_point = layer.select_param.slice_point
    axis = layer.select_param.axis
S
SunAhong1993 已提交
464 465 466 467 468 469 470 471 472 473 474
    input_shape = input_shapes[0]
    start = slice_point[0]
    if len(slice_point) == 2:
        end = slice_point[1]
    else:
        end = input_shape[axis]
    assert end > start, "invalid slice_point with [start:%d, end:%d]"\
             % (start, end)
    output_shape = input_shape
    output_shape[axis] = end - start
    return [output_shape]