tf_decoder.py 17.4 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
J
jiangjiajun 已提交
16 17
from x2paddle.core.fluid_code import FluidCode
from tensorflow.python.framework import tensor_util
J
jiangjiajun 已提交
18
from tensorflow.core.framework import attr_value_pb2
J
jiangjiajun 已提交
19
import tensorflow as tf
J
jiangjiajun 已提交
20
import copy as cp
J
jiangjiajun 已提交
21
import numpy
J
jiangjiajun 已提交
22
import sys
J
jiangjiajun 已提交
23

24

J
jiangjiajun 已提交
25
class TFGraphNode(GraphNode):
J
jiangjiajun 已提交
26
    def __init__(self, layer, layer_name=None, data_format="NHWC"):
J
jiangjiajun 已提交
27
        if layer_name is None:
J
jiangjiajun 已提交
28 29 30
            super(TFGraphNode,
                  self).__init__(layer,
                                 layer.name.replace('/', '_').replace('-', '_'))
J
jiangjiajun 已提交
31
        else:
J
jiangjiajun 已提交
32 33 34
            super(TFGraphNode,
                  self).__init__(layer,
                                 layer_name.replace('/', '_').replace('-', '_'))
J
jiangjiajun 已提交
35

J
jiangjiajun 已提交
36
        self.layer_type = layer.op
J
jiangjiajun 已提交
37 38
        self.tf_data_format = data_format
        self.pd_data_format = "NCHW"
J
jiangjiajun 已提交
39
        self.fluid_code = FluidCode()
J
jiangjiajun 已提交
40

41
        self.dtype_map = {1: "float32", 3: "int32", 4: "uint8", 9: "int64"}
42 43 44 45 46 47 48 49 50 51 52 53

    @property
    def out_shapes(self):
        values = self.layer.attr["_output_shapes"].list.shape
        out_shapes = list()
        for value in values:
            shape = [dim.size for dim in value.dim]
            out_shapes.append(shape)
        return out_shapes

    @property
    def dtype(self):
J
jiangjiajun 已提交
54
        keys = ['dtype', 'Tidx', 'T', 'DstT']
55 56 57 58
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
59 60 61 62
        if dtype not in self.dtype_map:
            raise Exception("Dtype[{}] not in dtype_map".format(dtype))
        return self.dtype_map[dtype]

J
jiangjiajun 已提交
63 64 65 66 67 68 69 70 71
    @property
    def raw_dtype(self):
        keys = ['dtype', 'Tidx', 'T', 'DstT']
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
        return dtype

J
jiangjiajun 已提交
72 73 74 75 76 77 78 79
    @property
    def value(self):
        assert self.layer_type == "Const", "Only Const node has value."

        attr = self.layer.attr['value']
        field = getattr(attr, attr.WhichOneof('value'))
        return tensor_util.MakeNdarray(field)

J
jiangjiajun 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    def get_attr(self, name):
        if name not in self.layer.attr:
            return None
        attr = self.layer.attr[name]
        field = attr.WhichOneof('value')
        value = getattr(attr, field) if field else None

        if isinstance(value, attr_value_pb2.AttrValue.ListValue):
            result = list(value.ListFields()[0][1])
            for i in range(len(result)):
                if isinstance(result[i], int):
                    result[i] = int(result[i])
                try:
                    if isinstance(result[i], long):
                        result[i] = int(result[i])
                except:
                    pass
            return result
        else:
            return value

J
jiangjiajun 已提交
101 102

class TFGraph(Graph):
J
jiangjiajun 已提交
103
    def __init__(self, model, data_format="NHWC"):
J
jiangjiajun 已提交
104
        super(TFGraph, self).__init__(model)
J
jiangjiajun 已提交
105
        self.identity_map = dict()
J
jiangjiajun 已提交
106
        self.multi_out_ops = ['Split', 'SplitV']
J
jiangjiajun 已提交
107
        self.tf_data_format = data_format
J
jiangjiajun 已提交
108 109 110

    def build(self):
        for layer in self.model.node:
J
jiangjiajun 已提交
111
            self.node_map[layer.name.replace('/', '_').replace(
J
jiangjiajun 已提交
112
                '-', '_')] = TFGraphNode(layer, data_format=self.tf_data_format)
J
jiangjiajun 已提交
113

J
jiangjiajun 已提交
114 115
        for layer_name, node in self.node_map.items():
            for in_node in node.layer.input:
J
jiangjiajun 已提交
116
                in_node = in_node.replace('/', '_').replace('-', '_')
J
jiangjiajun 已提交
117 118
                if in_node not in self.node_map:
                    if in_node.strip().split(':')[0] in self.node_map:
J
jiangjiajun 已提交
119
                        self.connect(in_node.strip().split(':')[0], layer_name)
J
jiangjiajun 已提交
120
                    else:
121 122 123
                        raise Exception(
                            'input[{}] of node[{}] does not exist in node_map'.
                            format(in_node, layer_name))
J
jiangjiajun 已提交
124 125 126
                else:
                    self.connect(in_node, layer_name)

127
        super(TFGraph, self).build()
J
jiangjiajun 已提交
128

J
jiangjiajun 已提交
129 130 131
        # tensorflow graph optimize
        self._remove_isolated_node()
        self._remove_identity_node()
J
jiangjiajun 已提交
132
        self._remove_cast_node()
J
jiangjiajun 已提交
133 134 135

    def get_node(self, node_name, copy=False):
        items = node_name.strip().split(':')
J
jiangjiajun 已提交
136
        items[0] = items[0].replace('/', '_').replace('-', '_')
J
jiangjiajun 已提交
137 138 139
        if items[0] in self.identity_map:
            items[0] = self.identity_map[items[0]]
        new_node_name = ":".join(items)
J
jiangjiajun 已提交
140
        node = super(TFGraph, self).get_node(new_node_name, copy)
J
jiangjiajun 已提交
141 142
        if node is None:
            return None
J
jiangjiajun 已提交
143 144 145
        if len(items) == 1 and node.layer_type in self.multi_out_ops:
            node.index = 0
        return node
J
jiangjiajun 已提交
146

J
jiangjiajun 已提交
147 148 149 150 151
    def remove_node(self, node_name):
        if node_name not in self.node_map:
            raise Exception("Node[{}] not in graph".format(node_name))
        inputs = self.node_map[node_name].inputs
        outputs = self.node_map[node_name].outputs
152
        #        assert len(inputs) == 1
J
jiangjiajun 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166
        input_node = self.node_map[inputs[0]]
        idx = input_node.outputs.index(node_name)
        del input_node.outputs[idx]
        for output in outputs:
            node = self.node_map[output]
            idx = node.inputs.index(node_name)
            node.inputs[idx] = inputs[0]
            input_node.outputs.append(output)

        del self.node_map[node_name]

        idx = self.topo_sort.index(node_name)
        del self.topo_sort[idx]

J
jiangjiajun 已提交
167 168 169 170
    def _remove_isolated_node(self):
        # delete isolated nodes
        isolated_nodes = list()
        for node_name in self.node_map.keys():
J
jiangjiajun 已提交
171
            if len(self.get_node(node_name).inputs) == 0 and len(
J
jiangjiajun 已提交
172 173 174
                    self.get_node(node_name).outputs) == 0:
                isolated_nodes.append(node_name)

J
jiangjiajun 已提交
175
        for node_name in isolated_nodes:
J
jiangjiajun 已提交
176 177 178 179 180 181 182 183 184
            del self.node_map[node_name]
            if node_name in self.input_nodes:
                idx = self.input_nodes.index(node_name)
                del self.input_nodes[idx]
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                del self.output_nodes[idx]
            idx = self.topo_sort.index(node_name)
            del self.topo_sort[idx]
J
jiangjiajun 已提交
185 186 187 188

    def _remove_identity_node(self):
        identity_node = list()
        for node_name, node in self.node_map.items():
J
jiangjiajun 已提交
189
            if node.layer_type == "Identity" or node.layer_type == "StopGradient":
J
jiangjiajun 已提交
190 191 192 193 194
                identity_node.append(node_name)

        for node_name in identity_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
J
jiangjiajun 已提交
195
            self.remove_node(node_name)
J
jiangjiajun 已提交
196 197 198

            self.identity_map[node_name] = input_node.layer_name

J
jiangjiajun 已提交
199 200 201 202
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    def _remove_cast_node(self):
        cast_node = list()
        for node_name, node in self.node_map.items():
            if node.layer_type == "Cast":
                input = self.get_node(node.inputs[0])
                if input.layer_type != "Placeholder" or len(input.outputs) != 1:
                    continue
                cast_node.append(node_name)

        for node_name in cast_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
            input_node.layer.attr["dtype"].type = node.raw_dtype
            self.remove_node(node_name)

            self.identity_map[node_name] = input_node.layer_name

            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
224 225 226 227 228 229 230 231 232 233 234
    def data_format_propagation(self, node):
        current_node = self.node_map[node.layer_name]
        current_node = node.tf_data_format
        outputs = current_node.outputs
        if len(outputs) == 0:
            return
        for out in outputs:
            next_node = self.node_map[out]
            next_node.tf_data_format = node.tf_data_format
            self.data_format_propagation(next_node)

J
jiangjiajun 已提交
235

J
jiangjiajun 已提交
236
class TFDecoder(object):
237
    def __init__(self, pb_model, data_format="NHWC", define_input_shape=False):
238 239 240 241
        try:
            self.sess = tf.compat.v1.Session()
        except:
            self.sess = tf.Session()
J
jiangjiajun 已提交
242
        self.input_info = dict()
243
        self.define_input_shape = define_input_shape
244 245 246 247 248
        with open(pb_model, 'rb') as f:
            try:
                graph_def = tf.compat.v1.GraphDef()
            except:
                graph_def = tf.GraphDef()
J
jiangjiajun 已提交
249
            graph_def.ParseFromString(f.read())
J
jiangjiajun 已提交
250
            input_map = self._check_input_shape(graph_def)
J
jiangjiajun 已提交
251
            self._fix_output_shape(graph_def)
J
jiangjiajun 已提交
252
            self.sess.graph.as_default()
J
jiangjiajun 已提交
253
            tf.import_graph_def(graph_def, name='', input_map=input_map)
254

255 256 257 258 259
        try:
            initializer = tf.compat.v1.global_variables_initializer()
        except:
            initializer = tf.global_variables_initializer()
        self.sess.run(initializer)
J
jiangjiajun 已提交
260

J
jiangjiajun 已提交
261
        self.tf_graph = TFGraph(
J
jiangjiajun 已提交
262
            self.sess.graph._as_graph_def(add_shapes=True)[0], data_format)
J
jiangjiajun 已提交
263
        self.tf_graph.build()
J
jiangjiajun 已提交
264 265 266 267 268 269

    def _fix_output_shape(self, graph):
        for i in range(len(graph.node)):
            node = graph.node[i]
            if node.op == "swish_f32":
                graph.node[i].attr['_disable_call_shape_inference'].b = False
J
jiangjiajun 已提交
270 271

    def _check_input_shape(self, graph_def):
J
jiangjiajun 已提交
272
        numpy.random.seed(13)
J
jiangjiajun 已提交
273 274 275 276 277 278
        graph_def = cp.deepcopy(graph_def)
        input_map = dict()
        for layer in graph_def.node:
            if layer.op != "Placeholder":
                continue
            graph_node = TFGraphNode(layer)
279
            dtype = graph_node.layer.attr['dtype'].type
J
jiangjiajun 已提交
280 281

            need_define_shape = 0
282 283 284 285 286
            if self.define_input_shape:
                need_define_shape = 3
            elif graph_node.layer.attr[
                    'shape'].shape.unknown_rank or not graph_node.get_attr(
                        "shape"):
J
jiangjiajun 已提交
287 288 289 290 291 292 293 294
                need_define_shape = 1
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                if shape.count(-1) > 1:
                    need_define_shape = 2

            if need_define_shape > 0:
295 296 297 298
                shape = None
                if graph_node.get_attr("shape"):
                    value = value = graph_node.layer.attr["shape"].shape
                    shape = [dim.size for dim in value.dim]
J
jiangjiajun 已提交
299
                if need_define_shape == 1:
J
jiangjiajun 已提交
300 301
                    print("Unknown shape for input tensor[tensor name: \"{}\"]".
                          format(layer.name))
302
                elif need_define_shape == 2:
J
jiangjiajun 已提交
303
                    print(
J
jiangjiajun 已提交
304 305
                        "\nShape[now is {}] for input tensor[tensor name: \"{}\"] not support yet"
                        .format(shape, layer.name))
306 307 308 309
                else:
                    print(
                        "Define shape[now is {}] for input tensor[tensor name: \"{}\']"
                        .format(shape, layer.name))
J
jiangjiajun 已提交
310
                print(
J
jiangjiajun 已提交
311 312 313 314
                    "Use your keyboard type the shape of input tensor below :)")

                right_shape_been_input = False
                while not right_shape_been_input:
M
mamingjie-China 已提交
315 316 317 318 319
                    try:
                        shape = raw_input(
                            "Shape of Input(e.g. None,224,224,3): ")
                    except:
                        shape = input("Shape of Input(e.g. None,224,224,3): ")
J
jiangjiajun 已提交
320
                    if shape.count("None") > 1:
J
jiangjiajun 已提交
321
                        print("Only 1 dimension can be None, type again:)")
J
jiangjiajun 已提交
322 323 324
                    else:
                        right_shape_been_input = True

J
jiangjiajun 已提交
325 326 327 328
                shape = [
                    None if dim == "None" else int(dim)
                    for dim in shape.strip().split(',')
                ]
J
jiangjiajun 已提交
329
                assert shape.count(None) <= 1, "Only one dimension can be None"
330 331 332 333 334 335 336 337 338 339 340
                try:
                    x2paddle_input = tf.compat.v1.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
                except:
                    x2paddle_input = tf.placeholder(dtype=dtype,
                                                    shape=shape,
                                                    name="x2paddle_{}".format(
                                                        layer.name))

J
jiangjiajun 已提交
341
                input_map["{}:0".format(layer.name)] = x2paddle_input
342 343
                if shape.count(None) > 0:
                    shape[shape.index(None)] = -1
J
jiangjiajun 已提交
344 345 346 347 348 349 350
                self.input_info["x2paddle_{}".format(layer.name)] = (shape,
                                                                     dtype)
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                self.input_info[graph_node.layer_name] = (shape, dtype)

J
jiangjiajun 已提交
351
        return input_map
J
jiangjiajun 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

    # trick method
    # should be removed after PaddlePaddle V1.6 been released
    def infer_tensor(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        for input_name, info in self.input_info.items():
            (shape, dtype) = cp.deepcopy(info)
            input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0")
            if shape.count(-1) > 0:
                shape[shape.index(-1)] = 2
            feed[input_tensor] = numpy.random.random_sample(shape)
        output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
        return self.sess.run([output_tensor], feed)[0]

    def infer_shape_tensor(self, graph_node, out_shape=None):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        results = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            results.append(self.sess.run([output_tensor], feed)[0].flatten())

        compare01 = (results[0] == results[1])
        compare12 = (results[1] == results[2])

        if compare01.all() and compare12.all():
            return results[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            results[0][index[0]] = -1

            index = numpy.argwhere(results[0] < 0).flatten()
            if index.shape[0] > 2:
                print("Warning: More than two dimension less than zero")
            if index.shape[0] == 2 and out_shape is not None:
                if out_shape[index[1]] > 0:
                    results[0][index[1]] = out_shape[index[1]]
                else:
                    results[0][index[0]] = out_shape[index[0]]
            return results[0].tolist()
        else:
            raise Exception("Couldn't infer a stable shape shape tensor value")
J
jiangjiajun 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    def infer_tensor_shape(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        shapes = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            shape = self.sess.run([output_tensor], feed)[0].shape
            shapes.append(numpy.array(shape))

        compare01 = (shapes[0] == shapes[1])
        compare12 = (shapes[1] == shapes[2])

        if compare01.all() and compare12.all():
            return shape[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            if index[0] != 0:
                raise Exception("Batch size not in the first dimension")
            shapes[0][0] = -1
            return shapes[0].tolist()