提交 f176cc8f 编写于 作者: N Nicky Chan 提交者: daminglu

Paddle tutorial cn (#428)

上级 b9e7b276
...@@ -7,6 +7,7 @@ VisualDL 支持 Python 和 C++ 基于 DL 框架, ...@@ -7,6 +7,7 @@ VisualDL 支持 Python 和 C++ 基于 DL 框架,
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
paddle/TUTORIAL_CN.md
keras/TUTORIAL_CN.md keras/TUTORIAL_CN.md
mxnet/TUTORIAL_CN.md mxnet/TUTORIAL_CN.md
pytorch/TUTORIAL_CN.md pytorch/TUTORIAL_CN.md
\ No newline at end of file
# 如何在PaddlePaddle中使用VisualDL
下面我们演示一下如何在PaddlePaddle中使用VisualDL,从而可以把PaddlePaddle的训练过程可视化出来。我们将以PaddlePaddle用卷积神经网络(CNN, Convolutional Neural Network)来训练
[Cifar10](https://www.cs.toronto.edu/~kriz/cifar.html) 数据集作为例子。
以下范例是在官方Paddle Book [Example](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification)
的基础上用PaddlePaddle's Fluid API修改。
完整的演示程序可以在[这里](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/paddle/paddle_cifar10.py)下载。
这程序是在Paddle v2 0.11版本上开发。可以用```pip install paddlepaddle``````docker pull paddlepaddle/paddle:0.11.0```来安装。注意Paddle还没支持Python3。
安装详细流程请看[这里](http://paddlepaddle.org/docs/0.11.0/documentation/cn/getstarted/build_and_install/index_en.html)
首先我们创建Loggers来记录不同种类的数据:
```python
# create VisualDL logger and directory
logdir = "./tmp"
logwriter = LogWriter(logdir, sync_cycle=10)
# create 'train' run
with logwriter.mode("train") as writer:
# create 'loss' scalar tag to keep track of loss function
loss_scalar = writer.scalar("loss")
with logwriter.mode("train") as writer:
acc_scalar = writer.scalar("acc")
num_samples = 4
with logwriter.mode("train") as writer:
conv_image = writer.image("conv_image", num_samples, 1) #show 4 samples for every 1 step
input_image = writer.image("input_image", num_samples, 1)
with logwriter.mode("train") as writer:
param1_histgram = writer.histogram("param1", 100) #100 buckets, e.g 100 data sets in a histograms
```
我们再来用Paddle v2 Fluid APIs创建VGG CNN模型:
```python
def vgg16_bn_drop(input):
def conv_block(input, num_filter, groups, dropouts):
return fluid.nets.img_conv_group(
input=input,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act='relu',
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type='max')
conv1 = conv_block(input, 64, 2, [0.3, 0])
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
fc1 = fluid.layers.fc(input=drop, size=512, act=None)
bn = fluid.layers.batch_norm(input=fc1, act='relu')
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
return fc2, conv1
classdim = 10
data_shape = [3, 32, 32]
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
net, conv1 = vgg16_bn_drop(images)
predict = fluid.layers.fc(
input=net,
size=classdim,
act='softmax',
param_attr=ParamAttr(name="param1", initializer=NormalInitializer()))
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
BATCH_SIZE = 16
PASS_NUM = 1
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.cifar.train10(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
exe.run(fluid.default_startup_program())
```
接下来我们开始训练并且同时用 VisualDL 来采集相关数据
```python
for pass_id in range(PASS_NUM):
accuracy.reset(exe)
for data in train_reader():
loss, conv1_out, param1, acc = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost, conv1, param1_var] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
# all code below is for VisualDL
# start picking sample from beginning
if sample_num == 0:
input_image.start_sampling()
conv_image.start_sampling()
idx1 = input_image.is_sample_taken()
idx2 = conv_image.is_sample_taken()
assert idx1 == idx2
idx = idx1
if idx != -1:
image_data = data[0][0]
# reshape the image to 32x32 and 3 channels
input_image_data = np.transpose(
image_data.reshape(data_shape), axes=[1, 2, 0])
# add sample to VisualDL Image Writer to view input image
input_image.set_sample(idx, input_image_data.shape,
input_image_data.flatten())
conv_image_data = conv1_out[0][0]
# add sample to view conv image
conv_image.set_sample(idx, conv_image_data.shape,
conv_image_data.flatten())
sample_num += 1
# when we have enough samples, call finish sampling()
if sample_num % num_samples == 0:
input_image.finish_sampling()
conv_image.finish_sampling()
sample_num = 0
# add record for loss and accuracy to scalar
loss_scalar.add_record(step, loss)
acc_scalar.add_record(step, acc)
param1_histgram.add_record(step, param1.flatten())
print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
pass_acc))
step += 1
```
训练结束后,各个组件的可视化结果如下:
关于accuracy和loss的数值图的如下:
<p align=center>
<img width="70%" src="https://github.com/daming-lu/large_files/blob/master/paddle_demo_figs/paddle_scalar.png?raw=true" />
</p>
训练过后的来源图和卷积权重图的各四个样本如下:
<p align=center>
<img width="70%" src="https://github.com/daming-lu/large_files/blob/master/paddle_demo_figs/paddle_image.png?raw=true" />
</p>
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册