未验证 提交 e09ab3d2 编写于 作者: Z Zeyu Chen 提交者: GitHub

Delete README.en.md

上级 7c1ddcc6
[![Build Status](https://travis-ci.org/PaddlePaddle/VisualDL.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/VisualDL)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://github.com/PaddlePaddle/VisualDL/tree/develop/docs)
[![Release](https://img.shields.io/github/release/PaddlePaddle/VisualDL.svg)](https://github.com/PaddlePaddle/VisualDL/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
<p align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/docs/images/vs-logo.png" width="60%" />
</p>
## 介绍
VisualDL是一个面向深度学习任务设计的可视化工具,包含了scalar、参数分布、模型结构、图像可视化等功能,项目正处于高速迭代中,新的组件会不断加入。
目前大多数DNN平台均使用Python作为配置语言,VisualDL原生支持python的使用,
通过在模型的Python配置中添加几行,便可以为训练过程提供丰富的可视化支持。
除了Python SDK之外,VisualDL底层采用C++编写,其暴露的C++ SDK也可以集成到其他平台中,
实现原生的性能和定制效果。
## 组件
VisualDL 目前支持以下组件:
- scalar
- histogram
- image
- audio
- graph
- high dimensional
### Scalar
可以用于展示训练测试的误差趋势
<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_scalar.gif" width="60%"/>
</p>
### Histogram
用于可视化任何tensor中元素分布的变化趋势
<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/histogram.gif" width="60%"/>
</p>
### Image
可以用于可视化任何tensor,或模型生成的图片
<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_image.gif" width="60%"/>
</p>
### Audio
可用于播放输入或生成的音频样本
### Graph
VisualDL的graph支持paddle program的展示,同时兼容 ONNX(Open Neural Network Exchange)[https://github.com/onnx/onnx],通过与 python SDK的结合,VisualDL可以兼容包括 PaddlePaddle, pytorch, mxnet在内的大部分主流DNN平台。
<p align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/docs/images/graph_demo.gif" width="60%" />
</p>
要进行paddle模型的展示,需要进行以下两步操作:
1. 在paddle代码中,调用`fluid.io.save_inference_model()`接口保存模型
2. 在命令行界面,使用`visualdl --model_pb [paddle_model_dir]` 加载paddle模型
### High Dimensional
用高维度数据映射在2D/3D来可视化嵌入
<p align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/docs/getting_started/high_dimensional_3d.png" width="60%"/>
</p>
## 快速尝试
请使用下面的命令,来快速测试 VisualDL。
```
# 安装,建议是在虚拟环境或anaconda下。
pip install --upgrade visualdl
# 运行一个例子,vdl_create_scratch_log 将创建测试日志
vdl_create_scratch_log
visualdl --logdir=scratch_log --port=8080
# 访问 http://127.0.0.1:8080
```
如果出现`TypeError: __init__() got an unexpected keyword argument 'file'`, 是因为protobuf不是3.5以上,运行`pip install --upgrade protobuf`就能解决。
如果以上步骤还有出现其他问题,很可能是因为python或pip不同版本或不同位置所致,以下安装方法能解决。
## 使用 virtualenv 安装
[Virtualenv](https://virtualenv.pypa.io/en/stable/) 能创建独立Python环境,也能确保Python和pip的相对位置正确。
在macOS上,安装pip和virtualenv如下:
```
sudo easy_install pip
pip install --upgrade virtualenv
```
在Linux上,安装pip和virtualenv如下:
```
sudo apt-get install python3-pip python3-dev python-virtualenv
```
然后创建一个虚拟环境:
```
virtualenv ~/vdl # for Python2.7
virtualenv -p python3 ~/vdl for Python 3.x
```
```~/vdl``` 是你的Virtualenv目录, 你也可以选择任一目录。
激活虚拟环境如下:
```
source ~/vdl/bin/activate
```
现在再安装 VisualDL 和运行范例:
```
pip install --upgrade visualdl
# 运行一个例子,vdl_create_scratch_log 将创建测试日志
vdl_create_scratch_log
visualdl --logdir=scratch_log --port=8080
# 访问 http://127.0.0.1:8080
```
如果在虚拟环境下仍然遇到安装问题,请尝试以下方法。
## 使用 Anaconda 安装
Anaconda是一个用于科学计算的Python发行版,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。
请根据[Anaconda下载网站](https://www.anaconda.com/download) 的指示去下载和安装Anaconda.
下载Python 3.6版本的command-Line installer.
创建conda环境名字为```vdl```或任何名字:
```
conda create -n vdl pip python=2.7 # or python=3.3, etc.
```
激活conda环境如下:
```
source activate vdl
```
现在再安装 VisualDL 和运行范例:
```
pip install --upgrade visualdl
# 运行一个例子,vdl_create_scratch_log 将创建测试日志
vdl_create_scratch_log
visualdl --logdir=scratch_log --port=8080
# 访问 http://127.0.0.1:8080
```
如果仍然遇到安装问题,请尝试以下用源代码安装方法。
### 使用代码安装
```
#建議是在虚拟环境或anaconda下。
git clone https://github.com/PaddlePaddle/VisualDL.git
cd VisualDL
python setup.py bdist_wheel
pip install --upgrade dist/visualdl-*.whl
```
如果打包和安装遇到其他问题,不安装只想运行Visual DL可以看[这里](https://github.com/PaddlePaddle/VisualDL/blob/develop/docs/how_to_dev_frontend_en.md)
## SDK
VisualDL 同时提供了python SDK 和 C++ SDK 来实现不同方式的使用。
### Python SDK
VisualDL 现在支持 Python 2和 Python 3。
以最简单的Scalar组件为例,尝试创建一个scalar组件并插入多个时间步的数据:
```python
import random
from visualdl import LogWriter
logdir = "./tmp"
logger = LogWriter(logdir, sync_cycle=10000)
# mark the components with 'train' label.
with logger.mode("train"):
# create a scalar component called 'scalars/scalar0'
scalar0 = logger.scalar("scalars/scalar0")
# add some records during DL model running.
for step in range(100):
scalar0.add_record(step, random.random())
```
### C++ SDK
上面 Python SDK 中代码完全一致的C++ SDK用法如下
```c++
#include <cstdlib>
#include <string>
#include "visualdl/sdk.h"
namespace vs = visualdl;
namespace cp = visualdl::components;
int main() {
const std::string dir = "./tmp";
vs::LogWriter logger(dir, 10000);
logger.SetMode("train");
auto tablet = logger.AddTablet("scalars/scalar0");
cp::Scalar<float> scalar0(tablet);
for (int step = 0; step < 1000; step++) {
float v = (float)std::rand() / RAND_MAX;
scalar0.AddRecord(step, v);
}
return 0;
}
```
## 启动Board
当训练过程中已经产生了日志数据,就可以启动board进行实时预览可视化信息
### 在命令行中启动
```
visualdl --logdir <some log dir>
```
board 还支持一些参数来实现远程的访问:
- `--host` 设定IP
- `--port` 设定端口
- `-m / --model_pb` 指定 ONNX 格式的模型文件
### 在Python脚本中启动
```python
>>> from visualdl.server import app
>>> app.run(logdir="SOME_LOG_DIR")
```
`app.run()`支持命令行启动的所有参数,除此之外,还可以通过指定`open_browser=True`,自动打开浏览器。
### 贡献
VisualDL 是由 [PaddlePaddle](http://www.paddlepaddle.org/) 和
[ECharts](http://echarts.baidu.com/) 合作推出的开源项目。我们欢迎所有人使用,提意见以及贡献代码。
## 更多细节
想了解更多关于VisualDL的使用介绍,请查看[文档](https://github.com/PaddlePaddle/VisualDL/tree/develop/demo)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册