未验证 提交 d770be6d 编写于 作者: Y YixinKristy 提交者: GitHub

Update README.md

上级 10b3d7c3
......@@ -8,11 +8,12 @@ VisualDL 是一个面向深度学习任务设计的可视化工具。VisualDL
目前,VisualDL 支持 scalar, image, high dimensional 三个组件,项目正处于高速迭代中,敬请期待新组件的加入。
| 组件名称 | 展示图表 | 作用 |
| :------------------------------------------------------------------: | :--------: | :---------------------------------------------------------------- |
| <a href="#1">[Scalar](#Scalar--折线图组件)</a> | 折线图 | 动态展示损失函数值、准确率等标量数据 |
| <a href="#3">[Image](#Image--图片可视化组件)</a> | 图片可视化 | 显示图片,可显示输入图片和处理后的结果,便于查看中间过程的变化 |
| <a href="#6">[High Dimensional](#High-Dimensional--数据降维组件)</a> | 数据降维 | 将高维数据映射到 2D/3D 空间来可视化嵌入,便于观察不同数据的相关性 |
| 组件名称 | 展示图表 | 作用 |
| :----------------------------------------------------------: | :--------: | :----------------------------------------------------------- |
| [ Scalar](#Scalar--折线图组件) | 折线图 | 动态展示损失函数值、准确率等标量数据 |
| [Image](#Image--图片可视化组件) | 图片可视化 | 显示图片,可显示输入图片和处理后的结果,便于查看中间过程的变化 |
| [Graph](#Graph--网络结构组件) | 网络结构 | 展示网络结构、节点属性及数据流向,辅助学习、优化网络结构 |
| [High Dimensional](#High-Dimensional--数据降维组件) | 数据降维 | 将高维数据映射到 2D/3D 空间来可视化嵌入,便于观察不同数据的相关性 |
......@@ -159,7 +160,7 @@ if __name__ == '__main__':
with LogWriter(logdir="./log/image_test/train") as writer:
for step in range(6):
# 添加一个图片数据
writer.add_image(tag="doge",
writer.add_image(tag="eye",
img=random_crop("../../docs/images/eye.jpg"),
step=step)
```
......@@ -177,19 +178,98 @@ visualdl --logdir ./log --port 8080
### 功能操作说明
可搜索图片标签显示对应图片数据
- 可搜索图片标签显示对应图片数据
<p align="center">
<img src="https://visualdl.bj.bcebos.com/images/image-search.png" width="90%"/>
</p>
支持滑动Step/迭代次数查看不同迭代次数下的图片数据
- 支持滑动Step/迭代次数查看不同迭代次数下的图片数据
<p align="center">
<img src="https://visualdl.bj.bcebos.com/images/image-eye.gif" width="60%"/>
</p>
## Graph--网络结构组件
### 介绍
Graph组件一键可视化模型的网络结构。用于查看模型属性、节点信息、节点输入输出等,并进行节点搜索,协助开发者们快速分析模型结构与了解数据流向。
### Demo
共有两种启动方式:
1. 如果只需要使用Graph功能,在命令行执行`visualdl`后,在浏览器输入`http://127.0.0.1:8040`即可启动。
2. 如果同时需使用其他功能,在命令行执行
```shell
visualdl --logdir ./log --port 8080
```
在浏览器输入`http://127.0.0.1:8080`,即可启动。
启动后上传模型即可查看网络结构可视化:
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84490149-51e20580-acd5-11ea-9663-1f156892c0e0.png" width="80%"/>
</p>
### 功能操作说明
- 一键上传模型
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84487396-44c31780-acd1-11ea-831a-1632e636613d.png" width="80%"/>
</p>
- 支持上下左右任意拖拽模型、放大和缩小模型
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84487568-8784ef80-acd1-11ea-9da1-befedd69b872.GIF" width="80%"/>
</p>
- 搜索定位到对应节点
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84487694-b9965180-acd1-11ea-8214-34f3febc1828.png" width="30%"/>
</p>
- 点击查看模型属性
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84487751-cadf5e00-acd1-11ea-9ce2-4fdfeeea9c5a.png" width="30%"/>
</p>
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84487759-d03ca880-acd1-11ea-9294-520ef7f9e0b1.png" width="30%"/>
</p>
- 支持选择模型展示的信息
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84487829-ee0a0d80-acd1-11ea-8563-6682a15483d9.png" width="23%"/>
</p>
- 支持以PNG、SVG格式导出文件
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84487884-ff531a00-acd1-11ea-8b12-5221db78683e.png" width="30%"/>
</p>
- 点击节点即可展示对应属性信息
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84487941-13971700-acd2-11ea-937d-42fb524b9ee1.png" width="30%"/>
</p>
- 支持一键更换模型
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84487998-27db1400-acd2-11ea-83d7-5d75832ef41d.png" width="25%"/>
</p>
## High Dimensional--数据降维组件
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册