未验证 提交 a794e08f 编写于 作者: Y YixinKristy 提交者: GitHub

Update Readme--text part (#940)

* Update UserGuide-en.md

* Update README.md
上级 2c30dccc
...@@ -440,7 +440,7 @@ Text展示文本任务任意阶段的数据输出,对比不同阶段的文本 ...@@ -440,7 +440,7 @@ Text展示文本任务任意阶段的数据输出,对比不同阶段的文本
Text组件的记录接口如下: Text组件的记录接口如下:
```python ```python
add_text(self, tag, text_string, step=None, walltime=None) add_text(tag, text_string, step=None, walltime=None)
``` ```
接口参数说明如下: 接口参数说明如下:
...@@ -852,7 +852,7 @@ visualdl --logdir ./log --port 8080 ...@@ -852,7 +852,7 @@ visualdl --logdir ./log --port 8080
### 介绍 ### 介绍
High Dimensional 组件将高维数据进行降维展示,用于深入分析高维数据间的关系。目前支持以下种降维算法: High Dimensional 组件将高维数据进行降维展示,用于深入分析高维数据间的关系。目前支持以下种降维算法:
- PCA : Principle Component Analysis 主成分分析 - PCA : Principle Component Analysis 主成分分析
- t-SNE : t-distributed stochastic neighbor embedding t-分布式随机领域嵌入 - t-SNE : t-distributed stochastic neighbor embedding t-分布式随机领域嵌入
......
...@@ -382,7 +382,7 @@ visualizes the text output of NLP models within any stage, aiding developers to ...@@ -382,7 +382,7 @@ visualizes the text output of NLP models within any stage, aiding developers to
The interface of the Text is shown as follows: The interface of the Text is shown as follows:
```python ```python
add_text(self, tag, text_string, step=None, walltime=None) add_text(tag, text_string, step=None, walltime=None)
``` ```
The interface parameters are described as follows: The interface parameters are described as follows:
...@@ -798,7 +798,7 @@ Then, open the browser and enter the address`http://127.0.0.1:8080` to view: ...@@ -798,7 +798,7 @@ Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
### Introduction ### Introduction
High Dimensional projects high-dimensional data into a low dimensional space, aiding users to have an in-depth analysis of the relationship between high-dimensional data. Two dimensionality reduction algorithms are supported: High Dimensional projects high-dimensional data into a low dimensional space, aiding users to have an in-depth analysis of the relationship between high-dimensional data. Three dimensionality reduction algorithms are supported:
- PCA : Principle Component Analysis - PCA : Principle Component Analysis
- t-SNE : t-distributed Stochastic Neighbor Embedding - t-SNE : t-distributed Stochastic Neighbor Embedding
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册