Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
VisualDL
提交
5be1031a
V
VisualDL
项目概览
PaddlePaddle
/
VisualDL
大约 1 年 前同步成功
通知
88
Star
4655
Fork
642
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
10
列表
看板
标记
里程碑
合并请求
2
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
V
VisualDL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
10
Issue
10
列表
看板
标记
里程碑
合并请求
2
合并请求
2
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
5be1031a
编写于
1月 15, 2018
作者:
D
daminglu
提交者:
Yan Chunwei
1月 15, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add english intro (#154)
上级
77655b72
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
124 addition
and
0 deletion
+124
-0
docs/introduction_en.md
docs/introduction_en.md
+124
-0
未找到文件。
docs/introduction_en.md
0 → 100644
浏览文件 @
5be1031a
# VisualDL (Visualize the Deep Learning)
## Introduction
VisualDL is a deep learning visualization tool that can help design deep learning jobs.
It includes features such as scalar, parameter distribution, model structure and image visualization.
Currently it is being developed at a high pace.
New features will be continuously added.
At present, most DNN frameworks use Python as their primary language. VisualDL supports Python by nature.
Users can get plentiful visualization results by simply add a few lines of Python code into their model before training.
Besides Python SDK, VisualDL was writen in C++ on the low level. It also provides C++ SDK that
can be integrated into other platforms.
## Component
VisualDL now provides 4 components:
-
graph
-
scalar
-
image
-
histogram
### Graph
Graph is compatible with ONNX(Open Neural Network Exchange)[https://github.com/onnx/onnx],
Cooperated with Python SDK, VisualDL can be compatible with most major DNN frameworks, including
PaddlePaddle, PyTorch and MXNet.
<p
align=
"center"
>
<img
src=
"../demo/mxnet/mxnet_graph.gif"
width=
"600"
/>
</p>
### Scalar
Scalar can be used to show the trends of error during training.
<p
align=
"center"
>
<img
src=
"./images/scalar_demo.png"
width=
"600"
/>
</p>
### Image
Image can be used to visualize any tensor or intermediate generated image.
<p
align=
"center"
>
<img
src=
"./images/image_demo.png"
width=
"600"
/>
</p>
### Histogram
Histogram can be used to visualize parameter distribution and trends for any tensor.
<p
align=
"center"
>
<img
src=
"./images/histogram_demo.png"
width=
"600"
/>
</p>
## SDK
VisualDL provides both Python SDK and C++ SDK in order to fit more use cases.
### Python SDK
Below is an example of creating a simple Scalar component and inserting data from different timestamps:
```
python
import
random
from
visualdl
import
LogWriter
logdir
=
"./tmp"
logger
=
LogWriter
(
dir
,
sync_cycle
=
10
)
# mark the components with 'train' label.
with
logger
.
mode
(
"train"
):
# create a scalar component called 'scalars/scalar0'
scalar0
=
logger
.
scalar
(
"scalars/scalar0"
)
# add some records during DL model running, lets start from another block.
with
logger
.
mode
(
"train"
):
# add scalars
for
step
in
range
(
100
):
scalar0
.
add_record
(
step
,
random
.
random
())
```
### C++ SDK
Here is the C++ SDK identical to the Python SDK example above:
```
c++
#include <cstdlib>
#include <string>
#include "visualdl/sdk.h"
namespace
vs
=
visualdl
;
namepsace
cp
=
visualdl
::
components
;
int
main
()
{
const
std
::
string
dir
=
"./tmp"
;
vs
::
LogWriter
logger
(
dir
,
10
);
logger
.
SetMode
(
"train"
);
auto
tablet
=
logger
.
NewTablet
(
"scalars/scalar0"
);
cp
::
Scalar
<
float
>
scalar0
(
tablet
);
for
(
int
step
=
0
;
step
<
1000
;
step
++
)
{
float
v
=
(
float
)
std
::
rand
()
/
RAND_MAX
;
scalar0
.
AddRecord
(
step
,
v
);
}
return
0
;
}
```
## Launch Board
After some logs have been generated during training, users can launch board to see real-time data visualization.
```
visualDL --logdir <some log dir>
```
Board also supports the parameters below for remote access:
-
`--host`
set IP
-
`--port`
set port
-
`--model_pb`
specify ONNX format for model file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录