未验证 提交 44834335 编写于 作者: Y YixinKristy 提交者: GitHub

Update ROC Intro&GIF (#902)

* Update README.md

* Update README_CN.md

* Update README.md

* Update UserGuide-en.md
上级 9553ec70
...@@ -337,7 +337,7 @@ Developers can compare with multiple experiments by specifying and uploading the ...@@ -337,7 +337,7 @@ Developers can compare with multiple experiments by specifying and uploading the
**ROC Curve** shows the performance of a classification model at all classification thresholds; the larger the area under the curve, the better the model performs, aiding developers to evaluate the model performance and choose an appropriate threshold. **ROC Curve** shows the performance of a classification model at all classification thresholds; the larger the area under the curve, the better the model performs, aiding developers to evaluate the model performance and choose an appropriate threshold.
<p align="center"> <p align="center">
<img src="https://user-images.githubusercontent.com/48054808/103274711-42ba6f00-49fd-11eb-9452-4dd492682dd8.png" width="85%"/> <img src="https://user-images.githubusercontent.com/48054808/103344081-8928d000-4ac8-11eb-84d0-28f249886172.gif" width="85%"/>
</p> </p>
......
...@@ -345,10 +345,10 @@ value: 3.1297709941864014 ...@@ -345,10 +345,10 @@ value: 3.1297709941864014
### ROC Curve ### ROC Curve
展示不同不同阈值下模型的表现(TPR、TNR),曲线下面积越大,模型表现越好,辅助开发者进行阈值选择以及直观的掌握模型训练情况 展示不同阈值下模型指标的变化,同时曲线下的面积(AUC)直观的反应模型表现,辅助开发者掌握模型训练情况并高效进行阈值选择
<p align="center"> <p align="center">
<img src="https://user-images.githubusercontent.com/48054808/103275084-51555600-49fe-11eb-8c16-d18d26b724e3.png" width="85%"/> <img src="https://user-images.githubusercontent.com/48054808/103344081-8928d000-4ac8-11eb-84d0-28f249886172.gif" width="85%"/>
</p> </p>
### High Dimensional ### High Dimensional
......
...@@ -658,7 +658,7 @@ visualdl --logdir ./log --port 8080 ...@@ -658,7 +658,7 @@ visualdl --logdir ./log --port 8080
### 介绍 ### 介绍
ROC曲线展示不同不同阈值下模型的表现(TPR、TNR),曲线下面积越大,模型表现越好,辅助开发者进行阈值选择以及直观的掌握模型训练情况 ROC曲线展示不同阈值下模型指标的变化,同时曲线下的面积(AUC)直观的反应模型表现,辅助开发者掌握模型训练情况并高效进行阈值选择
### 记录接口 ### 记录接口
...@@ -708,7 +708,7 @@ visualdl --logdir ./log --port 8080 ...@@ -708,7 +708,7 @@ visualdl --logdir ./log --port 8080
接着在浏览器打开`http://127.0.0.1:8080`,即可查看ROC Curve 接着在浏览器打开`http://127.0.0.1:8080`,即可查看ROC Curve
<p align="center"> <p align="center">
<img src="https://user-images.githubusercontent.com/48054808/103275084-51555600-49fe-11eb-8c16-d18d26b724e3.png" width="80%"/> <img src="https://user-images.githubusercontent.com/48054808/103344081-8928d000-4ac8-11eb-84d0-28f249886172.gif" width="80%"/>
</p> </p>
*Note:ROC前端页面使用和PR相同,请参考上述PR Curve的使用说明。 *Note:ROC前端页面使用和PR相同,请参考上述PR Curve的使用说明。
......
...@@ -19,7 +19,7 @@ Currently, VisualDL provides seven components: scalar, image, audio, graph, hist ...@@ -19,7 +19,7 @@ Currently, VisualDL provides seven components: scalar, image, audio, graph, hist
| [Graph](#Graph--Network-Structure) | Network Structure | Visualize network structures, node attributes and data flow, assisting developers to learn and to optimize network structures. | | [Graph](#Graph--Network-Structure) | Network Structure | Visualize network structures, node attributes and data flow, assisting developers to learn and to optimize network structures. |
| [Histogram](#Histogram--Distribution-of-Tensors) | Distribution of Tensors | Present the changes of distributions of tensors, such as weights/gradients/bias, during the training process. | | [Histogram](#Histogram--Distribution-of-Tensors) | Distribution of Tensors | Present the changes of distributions of tensors, such as weights/gradients/bias, during the training process. |
| [PR Curve](#PR-Curve) | Precision & Recall Curve | Display precision-recall curves across training steps, clarifying the tradeoff between precision and recall when comparing models. | | [PR Curve](#PR-Curve) | Precision & Recall Curve | Display precision-recall curves across training steps, clarifying the tradeoff between precision and recall when comparing models. |
| [ROC Curve](#ROC-Curve) | Receiver Operating Characteristic curve | Shows the performance of a classification model at all classification thresholds | | [ROC Curve](#ROC-Curve) | Receiver Operating Characteristic curve | Shows the performance of a classification model at all classification thresholds. |
| [High Dimensional](#High-Dimensional--Data-Dimensionality-Reduction) | Data Dimensionality Reduction | Project high-dimensional data into 2D/3D space for embedding visualization, making it convenient to observe the correlation between data. | | [High Dimensional](#High-Dimensional--Data-Dimensionality-Reduction) | Data Dimensionality Reduction | Project high-dimensional data into 2D/3D space for embedding visualization, making it convenient to observe the correlation between data. |
At the same time, VisualDL provides [VDL.service](#vdlservice) , which allows developers to easily save, track and share visualization results of experiments with anyone for free. At the same time, VisualDL provides [VDL.service](#vdlservice) , which allows developers to easily save, track and share visualization results of experiments with anyone for free.
...@@ -713,7 +713,7 @@ visualdl --logdir ./log --port 8080 ...@@ -713,7 +713,7 @@ visualdl --logdir ./log --port 8080
Then, open the browser and enter the address`http://127.0.0.1:8080` to view: Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
<p align="center"> <p align="center">
<img src="https://user-images.githubusercontent.com/48054808/103274711-42ba6f00-49fd-11eb-9452-4dd492682dd8.png" width="85%"/> <img src="https://user-images.githubusercontent.com/48054808/103344081-8928d000-4ac8-11eb-84d0-28f249886172.gif" width="85%"/>
</p> </p>
*Note: the use of ROC Curve in the frontend is the same as that of PR Curve, please refer to the instructions in PR Curve section if needed. *Note: the use of ROC Curve in the frontend is the same as that of PR Curve, please refer to the instructions in PR Curve section if needed.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册