openvino-metadata.json 86.5 KB
Newer Older
P
Peter Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
[
  {
    "name": "Convolution",
    "schema": {
      "attributes": [
        {
          "default": [ 1, null ],
          "description": " *stride* is a distance (in pixels) to slide the filter on the feature map over the (x, y) axis. For example, *stride* equal \"1,1\" means sliding the filter 1 pixel at a time over the (x, y) axis.",
          "name": "stride",
          "option": "required",
          "type": "int32[]"
        },
        {
          "default": 1,
          "description": " *stride-x* is a distance (in pixels) to slide the filter on the feature map over the x axis. For example, *stride-x* equal 1 means sliding the filter 1 pixel at a time over the x axis.",
          "name": "stride-x",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *stride-y* is a distance (in pixels) to slide the filter on the feature map over the y axis. For example, *stride-y* equal 1 means sliding the filter 1 pixel at a time over the y axis.",
          "name": "stride-y",
          "option": "required",
          "type": "int32"
        },
        {
          "default": [ 1, null ],
          "name": "strides",
          "type": "int32[]"
        },
        {
          "default": 0,
          "description": " *pad* is a number of pixels to add to the left and top of the input. For example, *pad* equal 1 means adding 1 pixel to the left of the input. Right and bottom padding should be calculated from the expected output width (height).",
          "name": "pad",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 0,
          "description": " *pad-x* is a number of pixels to add to the left of the input. For example, *pad-x* equal 1 means adding 1 pixel to the left of the input. Right and bottom padding should be calculated from the expected output width (height).",
          "name": "pad-x",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 0,
          "description": " *pad-y* is a number of pixels to add to the top of the input. For example, *pad-y* equal 1 means adding 1 pixel to the top of the input. Right and bottom padding should be calculated from the expected output width (height).",
          "name": "pad-y",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 0,
          "name": "pad-r",
          "type": "int32"
        },
        {
          "default": 0,
          "name": "pad-b",
          "type": "int32"
        },
        {
          "default": [1, 1],
          "description": " *kernel* is a width and height of each filter. For example, *kernel* equal 3 (3, 3) means that each filter has width and height equal to 3.",
          "name": "kernel",
          "option": "required",
          "type": "int32[]"
        },
        {
          "default": 1,
          "description": " *kernel-x* is a width of each filter. For example, *kernel* equal 3 means that each filter has width equal to 3.",
          "name": "kernel-x",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *kernel-y* is a height of each filter. For example, *kernel-y* equal 3 means that each filter has height equal to 3.",
          "name": "kernel-y",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *output* is a number of output feature maps per whole output (when *group* > 1, *output* still matches the number of output features regardless of *group* value). For example, *output* equals 1 means that there is 1 output feature map in a layer.",
          "name": "output",
          "option": "required",
          "type": "int32",
          "visible": false
        },
        {
          "default": 1,
          "description": " *group* denotes the number of groups to which *output* and *input* should be split. For example, *group* equal 1 means that all the filters are applied to full input (usual convolution), *group* equals 2 means that both *input* and *output* channels are separated into 2 groups and *i-th output* group is connected to *i-th input* group channels. *group* equals number of output feature maps denotes depth-wise separable convolution ([Reference](https://medium.com/towards-data-science/types-of-convolutions-in-deep-learning-717013397f4d#6f51)).",
          "name": "group",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *dilation* denotes the distance in width and height between elements (weights) in the filter. For example, *dilation* equal \"1,1\" means that all the elements in the filter are neighbors, so it is the same as for the usual convolution. *dilation* equal \"2,2\" means that all the elements in the filter are matched not to adjacent elements in the input matrix, but to those that are adjacent with distance 1.",
          "name": "dilation",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "name": "dilation-x",
          "type": "int32"
        },
        {
          "default": [ 1, null ],
          "name": "dilations",
          "type": "int32[]"
        },
        {
          "default": "same_upper",
          "name": "auto_pad"
        },
        {
          "default": [ 0, null ],
          "name": "pads_begin",
          "type": "int32[]"
        },
        {
          "default": [ 0, null ],
          "name": "pads_end",
          "type": "int32[]"
        },
        {
          "default": 1,
          "description": " *dilation-y* denotes the distance in height between elements (weights) in the filter. For example, *dilation-y* equal 1 means that all the elements in the filter are neighbors, so it is the same as for the usual convolution. *dilation-y* equal 2 means that all the elements in the filter are matched not to adjacent elements in the input matrix, but to those that are adjacent with distance 1.",
          "name": "dilation-y",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/convolution.html)<br>**Detailed description**: [Reference](http://cs231n.github.io/convolutional-networks/#conv)\n**Parameters**: *Convolution* layer parameters should be specified in the `convolution_data` node, which is a child of the layer node.\n**Weights Layout** Weights layout is GOIYX, which means that *X* is changing the fastest, then *Y*, then *Input*, *Output*, then *Group*.\n**Mathematical Formulation**\n*   For the convolutional layer, the number of output features in each dimension is calculated using the formula:\n\\f[\nn_{out} = \\left ( \\frac{n_{in} + 2p - k}{s} \\right ) + 1\n\\f]\n*   The receptive field in each layer is calculated using the formulas:\n    *   Jump in the output feature map:\n        \\f[\n        j_{out} = j_{in} * s\n        \\f]\n    *   Size of the receptive field of output feature:\n        \\f[\n        r_{out} = r_{in} + ( k - 1 ) * j_{in}\n        \\f]\n    *   Center position of the receptive field of the first output feature:\n        \\f[\n        start_{out} = start_{in} + ( \\frac{k - 1}{2} - p ) * j_{in}\n        \\f]\n    *   Output is calculated using the following formula:\n        \\f[\n        out = \\sum_{i = 0}^{n}w_{i}x_{i} + b\n        \\f]\n**Example**\n\n```html\n<layer ... type=\"Convolution\" ... >\n        <convolution_data stride-x=\"4\" stride-y=\"4\" pad-x=\"0\" pad-y=\"0\" kernel-x=\"11\" kernel-y=\"11\" output=\"96\" group=\"1\" dilation-x=\"2\" dilation-y=\"2\"/>\n        <input> ... </input>\n        <output> ... </output>\n        <weights ... />\n        <biases ... />\n    </layer>\n```",
      "inputs": [
        {
        "name": "inputs",
        "option": "variadic"
        },
        {
        "description": "*(type: Tensor`<float>`)* List of input tensors.",
        "name": "X1, X2, ..."
        }
      ],
      "outputs": [
        {
        "description": "*(type: Tensor`<float>`)* Concatenated tensor.",
        "name": "concat_result"
        },
        {
        "description": "*(type: Tensor`<int>`)* The dimensions of the inputs.",
        "name": "split_info"
        }
      ],
      "support_level": "default"
    }
  },
  {
    "name": "BinaryConvolution",
    "schema": {
      "category": "Layer"
    }
  },
  {
    "name": "Pooling",
    "schema": {
      "attributes": [
        {
          "default": [ 1, null ],
          "description": " *stride* is a distance (in pixels) to slide the filter on the feature map over the (x, y) axis. For example, *stride* equal \"1,1\" means sliding the filter 1 pixel at a time over the (x, y) axis.",
          "name": "stride",
          "option": "required",
          "type": "int32[]"
        },
        {
          "default": 1,
          "description": " *stride-x* is a distance (in pixels) to slide the filter on the feature map over the x axis. For example, *stride-x* equal 1 means sliding the filter 1 pixel at a time over the x axis.",
          "name": "stride-x",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *stride-y* is a distance (in pixels) to slide the filter on the feature map over the y axis. For example, *stride-y* equal 1 means sliding the filter 1 pixel at a time over the y axis.",
          "name": "stride-y",
          "option": "required",
          "type": "int32"
        },
        {
          "default": [ 1, null ],
          "name": "strides",
          "type": "int32[]"
        },
        {
          "default": 1,
          "description": " *pad* is a number of pixels to add to the left and top of the input. For example, *pad* equal 1 means adding 1 pixel to the left of the input. Right and bottom padding should be calculated from the expected output width (height).",
          "name": "pad",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 0,
          "description": " *pad-x* is a number of pixels to add to the left of the input. For example, *pad-x* equal 1 means adding 1 pixel to the left of the input. Right and bottom padding should be calculated from the expected output width (height).",
          "name": "pad-x",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 0,
          "description": " *pad-y* is a number of pixels to add to the top of the input. For example, *pad-y* equal 1 means adding 1 pixel to the top of the input. Right and bottom padding should be calculated from the expected output width (height).",
          "name": "pad-y",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 0,
          "name": "pad-r",
          "type": "int32"
        },
        {
          "default": 0,
          "name": "pad-b",
          "type": "int32"
        },
        {
          "default": [ 0, null ],
          "name": "pads_begin",
          "type": "int32[]"
        },
        {
          "default": [ 0, null ],
          "name": "pads_end",
          "type": "int32[]"
        },
        {
          "description": " *kernel* is a width and height of each filter. For example, *kernel* equal 3 (3, 3) means that each filter has width and height equal to 3.",
          "name": "kernel",
          "option": "required",
          "type": "int32[]"
        },
        {
          "default": 1,
          "description": " *kernel-x* is a width of each filter. For example, *kernel* equal 3 means that each filter has width equal to 3.",
          "name": "kernel-x",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *kernel-y* is a height of each filter. For example, *kernel-y* equal 3 means that each filter has height equal to 3.",
          "name": "kernel-y",
          "option": "required",
          "type": "int32"
        },
        {
          "default": "max",
          "description": " *pool-method* is a type of pooling strategy for values.",
          "name": "pool-method",
          "option": "required",
          "type": ""
        },
        {
          "default": false,
          "description": " *exclude-pad* is a type of pooling strategy for values in the padding area. For example, if *exclude-pad* is \"true\", zero-values in the padding are not used.",
          "name": "exclude-pad",
          "option": "required",
          "type": "boolean"
        },
        {
          "default": "ceil",
          "description": " *rounding_type* is a type of rounding to be applied.",
          "name": "rounding-type",
          "option": "required",
          "type": "\n    * *ceil*\n    * *floor*"
        }
      ],
      "category": "Pool",
      "description": "**Short description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/pooling.html)\n**Detailed description**: [Reference](http://cs231n.github.io/convolutional-networks/#pool)\n**Parameters**: Specify pooling layer parameters in the `pooling_data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*   For *max pool-method*:\n    \\f[\n    output_{j} = MAX\\{ x_{0}, ... x_{i}\\}\n    \\f]\n*   For *avg pool-method*:\n    \\f[\n    output_{j} = \\frac{\\sum_{i = 0}^{n}x_{i}}{n}\n    \\f]\n**Example**\n\n```html\n<layer ... type=\"Pooling\" ... >\n        <pooling_data kernel-x=\"3\" kernel-y=\"3\" pad-x=\"0\" pad-y=\"0\" stride-x=\"2\" stride-y=\"2\" pool-method=\"max\" exclude-pad=\"true\" rounding_type=\"floor\"/>\n        <input> ... </input>\n        <output> ... </output>\n    </layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "ROIPooling",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *pooled_h* is a height of the ROI output feature map. For example, *pooled_h* equal 6 means that the height of the output of *ROIpooling* is 6.",
          "name": "pooled_h",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *pooled_w* is a width of the ROI output feature map. For example, *pooled_w* equal 6 means that the width of the output of *ROIpooling* is 6.",
          "name": "pooled_w",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *spatial_scale* is a ratio of the input feature map over the input image size.",
          "name": "spatial_scale",
          "option": "required",
          "type": " positive floating point value"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: It is a *pooling layer* with *max* pooling strategy (see *max* option in the *<a href=\"IRLayersCatalogSpec.html#pooling-layer\">Pooling layer</a>* parameters description). It is used over feature maps of non-uniform sizes and outputs another feature map of a fixed size.\n**Detailed description**: [deepsense.io reference](https://blog.deepsense.ai/region-of-interest-pooling-explained/)\n**Parameters**: Specify *ROIPooling* layer parameters in the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n\\f[\noutput_{j} = MAX\\{ x_{0}, ... x_{i}\\}\n\\f]\n**Example**\n\n```html\n<layer ... type=\"ROIPooling\" ... >\n        <data pooled_h=\"6\" pooled_w=\"6\" spatial_scale=\"0.062500\"/>\n        <input> ... </input>\n        <output> ... </output>\n    </layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "FullyConnected",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *out-size* is a length of the output vector. For example, *out-size* equal 4096 means that the output vector length is 4096.",
          "name": "out-size",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/innerproduct.html)\n**Detailed description**: [Reference](http://cs231n.github.io/convolutional-networks/#fc)\n**Parameters**: Specify *FullyConnected* layer parameters in the `fc_data` node, which is a child of the layer node.\n**Weights Layout** OI, which means that Input is changing the fastest, then Output.\n**Mathematical Formulation**\n*   If previous layer is *FullyConnected*:\n    \\f[\n    y_{i} = f( z_{i} ) \\quad with \\quad z_{i} = \\sum_{j=1}^{m_{1}^{( l-1 )}}w_{i,j}^{( l )}y_{i}^{ ( l -1  )}\n    \\f]\n*   Otherwise:\n    \\f[\n    y_{i} = f( z_{i} ) \\quad with \\quad z_{i}^{ ( l )} = \\sum_{j=1}^{m_{1}^{( l-1 )}}\\sum_{r=1}^{m_{2}^{ ( l-1  )}}\\sum_{s=1}^{m_{3}^{ ( l-1 )}}w_{i,j,r,s}^{ ( l )} ( Y_{i}^{ (l-1) })_{r,s}\n    \\f]\n**Example**\n\n```html\n<layer ... type=\"FullyConnected\" ... >\n        <fc_data out-size=\"4096\"/>\n        <input> ... </input>\n        <output> ... </output>\n    </layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "ReLU",
    "schema": {
      "attributes": [
        {
          "default": 0,
          "description": " *negative_slope* is a multiplier, which is used if the unit is not active (that is negative). For example, *negative_slope* equal 0.1 means that an inactive unit value would be multiplied by 0.1 and this is the [Leaky ReLU](https://keras.io/layers/advanced-activations/#leakyrelu). If *negative_slope* is equal to 0, this is the usual *ReLU*.",
          "name": "negative_slope",
          "option": "required",
          "type": "float64"
        }
      ],
      "category": "Activation",
      "description": "**Short description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/relu.html)\n**Detailed description**: [Reference](https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions#rectified-linear-units)\n**Parameters**: *ReLU* layer parameters can be (not mandatory) specified in the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n\\f[\nY_{i}^{( l )} = max(0, Y_{i}^{( l - 1 )})\n\\f]\n**Example**\n\n```html\n<layer ... type=\"ReLU\" ... >\n    <data negative_slope=\"0.100000\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Activation",
    "schema": {
      "attributes": [
        {
          "description": " *type* represents particular activation function. For example, *type* equal *sigmoid* means that neurons of this layer have a sigmoid activation function.",
          "name": "type",
          "option": "required"
        },
        {
          "default": 1.0,
          "name": "alpha",
          "type": "float32"
        }
      ],
      "category": "Activation",
      "description": "**Short description**: *Activation* layer represents an activation function of each neuron in a layer, which is used to add non-linearity to the computational flow.\n**Detailed description**: [Reference](https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0)\n**Parameters**: *Activation layer* parameters should be specified in the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*   Sigmoid function:\n    \\f[\n    f( x ) = \\frac{1}{1+e^{-x}}\n    \\f]\n*   Tahn function:\n    \\f[\n    f ( x ) = \\frac{2}{1+e^{-2x}} - 1 = 2sigmoid(2x) - 1\n    \\f]\n*\tElu function:\n\t\\f[\n    f(x) = \\left\\{\\begin{array}{ll}\n\t\te^{x} - 1 \\quad \\mbox{if } x < 0 \\\\\n\t\tx \\quad \\mbox{if } x \\geq  0\n\t\\end{array}\\right.\n\t\\f]\n*\tRelu6 function:\n\t\\f[\n         f(x) = min(max(0, x), 6)\n\t\\f]\n**Example**\n\n```html\n<layer ... type=\"Activation\" ... >\n    <data type=\"sigmoid\" />\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "SoftMax",
    "schema": {
      "attributes": [
        {
          "description": " *axis* represents the axis of which the *SoftMax* is calculated. *axis* equal 1 is a default value.",
          "name": "axis",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Activation",
      "description": "**Short description**: [Reference](https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions#softmax)\n**Detailed description**: [Reference](http://cs231n.github.io/linear-classify/#softmax)\n**Parameters**: *SoftMax* layer parameters can be (not mandatory) specified in the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n\\f[\ny_{c} = \\frac{e^{Z_{c}}}{\\sum_{d=1}^{C}e^{Z_{d}}}\n\\f]\nwhere \\f$C\\f$ is a number of classes\n**Example**\n\n```html\n<layer ... type=\"SoftMax\" ... >\n    <data axis=\"1\" />\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Deconvolution",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *stride* is a distance (in pixels) to slide the filter on the feature map over the (x, y) axis. For example, *stride* equal \"1,1\" means sliding the filter 1 pixel at a time over the (x, y) axis.",
          "name": "stride",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *stride-x* is a distance (in pixels) to slide the filter on the feature map over the x axis. For example, *stride-x* equal 1 means sliding the filter 1 pixel at a time over the x axis.",
          "name": "stride-x",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *stride-y* is a distance (in pixels) to slide the filter on the feature map over the y axis. For example, *stride-y* equal 1 means sliding the filter 1 pixel at a time over the y axis.",
          "name": "stride-y",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *pad* is a number of pixels to add to the left and top of the input. For example, *pad* equal 1 means adding 1 pixel to the left of the input. Right and bottom padding should be calculated from the expected output width (height).",
          "name": "pad",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *pad-x* is a number of pixels to add to the left of the input. For example, *pad-x* equal 1 means adding 1 pixel to the left of the input. Right and bottom padding should be calculated from the expected output width (height).",
          "name": "pad-x",
          "option": "required",
          "type": " int32"
        },
        {
          "default": 1,
          "description": " *pad-y* is a number of pixels to add to the top of the input. For example, *pad-y* equal 1 means adding 1 pixel to the top of the input. Right and bottom padding should be calculated from the expected output width (height).",
          "name": "pad-y",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *kernel* is a width and height of each filter. For example, *kernel* equal 3 (3, 3) means that each filter has width and height equal to 3.",
          "name": "kernel",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *kernel-x* is a width of each filter. For example, *kernel* equal 3 means that each filter has width equal to 3.",
          "name": "kernel-x",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *kernel-y* is a height of each filter. For example, *kernel-y* equal 3 means that each filter has height equal to 3.",
          "name": "kernel-y",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *output* is a number of output feature maps per whole output (when *group* > 1, *output* still matches the number of output features regardless of *group* value). For example, *output* equals 1 means that there is 1 output feature map in a layer.",
          "name": "output",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *group* denotes the number of groups to which *output* and *input* should be split. For example, *group* equal 1 means that all the filters are applied to full input (usual convolution), *group* equals 2 means that both *input* and *output* channels are separated into 2 groups and *i-th output* group is connected to *i-th input* group channels. *group* equals number of output feature maps denotes depth-wise separable convolution ([Reference](https://medium.com/towards-data-science/types-of-convolutions-in-deep-learning-717013397f4d#6f51)).",
          "name": "group",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *dilation* denotes the distance in width and height between elements (weights) in the filter. For example, *dilation* equal \"1,1\" means that all the elements in the filter are neighbors, so it is the same as for the usual convolution. *dilation* equal \"2,2\" means that all the elements in the filter are matched not to adjacent elements in the input matrix, but to those that are adjacent with distance 1.",
          "name": "dilation",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *dilation-y* denotes the distance in height between elements (weights) in the filter. For example, *dilation-y* equal 1 means that all the elements in the filter are neighbors, so it is the same as for the usual convolution. *dilation-y* equal 2 means that all the elements in the filter are matched not to adjacent elements in the input matrix, but to those that are adjacent with distance 1.",
          "name": "dilation-y",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: *Deconvolution* layer is applied for upsampling the output to the higher image resolution.\n**Detailed description**: [Reference](https://distill.pub/2016/deconv-checkerboard/)\n**Parameters**: *Deconvolution* layer parameters should be specified in the `deconvolution_data` node, which is a child of the layer node.\n**Parameters**: *Convolution* layer parameters should be specified in the `convolution_data` node, which is a child of the layer node.\n**Weights Layout** Weights layout is the following: GOIYX, which means that *X* is changing the fastest, then *Y*, then *Input*, *Output*, then *Group*.\n**Mathematical Formulation**\n*Deconvolution* is also called transpose convolution and performs operation, reverse to convolution.\nThe number of output features for each dimensions is calculated:\n\\f[S_{o}=stride(S_{i} - 1 ) + S_{f} - 2pad \\f]\nWhere \\f$S\\f$ is size of output, input and filter.\nOutput is calculated in the same way as for convolution layer:\n\\f[out = \\sum_{i = 0}^{n}w_{i}x_{i} + b\\f]\n**Example**\n\n```html\n<layer ... type=\"Deconvolution\" ... >\n    <deconvolution_data stride-x=\"2\" stride-y=\"2\" pad-x=\"1\" pad-y=\"1\" kernel-x=\"4\" kernel-y=\"4\" output=\"19\" group=\"1\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Norm",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *alpha* represents the scaling parameter for the normalizing sum. For example, *alpha* equal 0.0001 means that the normalizing sum is multiplied by 0.0001.",
          "name": "alpha",
          "option": "required",
          "type": " floating point positive number"
        },
        {
          "default": 1,
          "description": " *beta* represents the exponent for the normalizing sum. For example, *beta* equal 0.75 means that the normalizing sum is raised to the power of 0.75.",
          "name": "beta",
          "option": "required",
          "type": " floating point positive number"
        },
        {
          "default": 1,
          "description": " *region* represents strategy of local regions extension. For example, *region* equal *across* means that the normalizing sum is performed over adjacent channels.",
          "name": "region",
          "option": "required",
          "type": ""
        },
        {
          "default": 1,
          "description": " *local-size* represents the side length of the region to be used for the normalization sum or number of channels depending on the strategy specified in the *region* parameter. For example, *local-size* equal 5 for the across strategy means application of sum across 5 adjacent channels.",
          "name": "local-size",
          "option": "required",
          "type": " positive integer bigger than zero"
        }
      ],
      "category": "Normalization",
      "description": "**Short description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/lrn.html)\n**Detailed description**: [Reference](http://yeephycho.github.io/2016/08/03/Normalizations-in-neural-networks/#Local-Response-Normalization-LRN)\n**Parameters**: *Norm* layer parameters should be specified in the `norm_data` node, which is a child of the layer node.\n**Mathematical Formulation**\n\\f[o_{i} = \\left( 1 + \\left( \\frac{\\alpha}{n} \\right)\\sum_{i}x_{i}^{2} \\right)^{\\beta}\\f]\nWhere \\f$n\\f$ is the size of each local region.\n**Example**\n\n```html\n<layer ... type=\"Norm\" ... >\n    <norm_data alpha=\"9.9999997e-05\" beta=\"0.75\" local-size=\"5\" region=\"across\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Concat",
    "schema": {
      "attributes": [
        {
          "description": " *axis* is the number of axis over which input blobs are concatenated. For example, *axis* equal 1 means that input blobs are concatenated over the first axis.",
          "name": "axis",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Tensor",
      "description": "**Short description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/concat.html)\n**Parameters**: *Concat* layer parameters should be specified in the `concat_data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*Axis* parameter specifies a blob dimension to concat values. For example, for two input blobs *B1xC1xH1xW1* and *B2xC2xh4xW2* if axis: 1, output blob is****: *B1xC1+C2xH1xW1*. This is only possible if *B1=B2*, *H1=H4*, *W1=W2*.\n**Example**\n\n```html\n<layer ... type=\"Concat\" ... >\n    <concat_data axis=\"1\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Split",
    "schema": {
      "attributes": [
        { "name": "axis", "type": "int32" }
      ],
      "category": "Tensor",
      "description": "**Short description**: *Split* layer splits the input into several output groups. Group sizes are denoted by the number and the size of output ports.\n**Detailed description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/split.html)\n**Parameters**: *None*\n**Mathematical Formulation**\nSplits input blob among children. For example, blob is *BxC+CxHxW* and there are two children. Then, output blob is *BxCxHxW*.\n**Example**\n\n```html\n<layer ... type=\"Split\" ... >\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Reshape",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *axis* is the number of the starting axis for reshape. For example, *axis* equal 1 means that *Reshape* replaces dimensions starting from the next after the first dimension.",
          "name": "axis",
          "option": "required",
          "type": "int32"
        },
        {
          "description": " *dim* is a set of numbers separated with comma, which denote the dimensions of output blob. For example, *dim* equal 88,1,71 means that output blob gets following dimensions: first dimension equals 88, second dimension equals 1, third dimension equals 71. For more information, refer to the **Description** block. If *dim* is equal to two numbers, it performs [flattening](http://caffe.berkeleyvision.org/tutorial/layers/flatten.html).",
          "name": "dim",
          "option": "required",
          "type": "int32[]"
        },
        {
          "default": 1,
          "description": " *num_axes* is the number of dimensions to be replaced with a reshaped blob starting from the dimension number specified in *axis* property. For example, *num_axes* equal 2 means that 2 dimensions are replaced with reshaped blob.",
          "name": "num_axes",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Shape",
      "description": "**Short description**: *Reshape* layer changes dimensions of the input blob according to the specified order. Input blob volume is equal to output blob volume, where volume is the product of dimensions.\n**Detailed description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/reshape.html)\n**Parameters**: *Reshape* layer parameters should be specified in the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\nIf you want to reshape input blob *BxCxHxW* into *Bx1x(C*H)xW*, the *dim* parameters of your layer should be:\n```html\n layer {\n    name: \"reshape\"\n    type: \"Reshape\"\n    bottom: \"input\"\n    top: \"output\"\n    reshape_param {\n      shape {\n        dim: 0  # copy the dimension from below\n        dim: 1\n        dim: -1 # infer it from the other dimensions\n        dim: 0\n      }\n    }\n  }\n```\n**Example**\n\n```html\n<layer ... type=\"Reshape\" ... >\n    <data axis=\"0\" dim=\"1, 1001\" num_axes=\"-1\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Eltwise",
    "schema": {
      "attributes": [
        {
          "default": "sum",
          "description": " *operation* is the simple mathematical operation to be performed over inputs. For example, *operation* equal *mul* means that input blobs are multiplied.",
          "name": "operation",
          "option": "required",
          "type": "string"
        }
      ],
      "description": "**Short description**: *Eltwise* layer performs element-wise operation, which is specified in parameters, over given inputs.\n**Parameters**: *Eltwise* layer parameters should be specified in the `elementwise_data` node, which is placed as a child of the layer node.\n**Mathematical Formulation** *Eltwise* accepts 2 inputs of any number of dimensions - from 1 to 4, however, it is required for both of them to have absolutely same dimensions. The produced blob is also of the same dimension as each of its parents\n*Eltwise* does the following with the input blobs:\n\\f[\no_{i} = f(b_{i}^{1}, b_{i}^{2})\n\\f]\nwhere \\f$b_{i}^{1}\\f$ - first blob \\f$i\\f$-th element, \\f$b_{i}^{2}\\f$ - second blob \\f$i\\f$-th element, \\f$o_{i}\\f$ - output blob \\f$i\\f$-th element, \\f$f(a, b)\\f$ - is a function that performs an operation over its two arguments \\f$a, b\\f$.\n*   For *sum* operation, \\f$f(a, b)\\f$ is defined as\n    \\f[\n    f(a,b) = a + b\n    \\f]\n*   For *mul* operation, \\f$f(a, b)\\f$ is defined as\n    \\f[\n    f(a,b) = a * b\n    \\f]\n*   For *max* operation, \\f$f(a, b)\\f$ is defined as\n    \\f[\n    f(a,b) = \\left\\{\\begin{array}{ll}\n\t\ta \\quad \\mbox{if } a \\geq b \\\\\n\t\tb \\quad \\mbox{if } b > a\n\t\\end{array}\\right. \\f]\n**Example**\n\n```html\n<layer ... type=\"Eltwise\" ... >\n    <elementwise_data operation=\"sum\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "ScaleShift",
    "schema": {
      "category": "Layer",
      "attributes": [],
      "description": "**Short description**: *ScaleShift* layer performs linear transformation of the input blobs. Weights denote scaling parameter, biases - a shift.\n**Parameters**: *ScaleShift* layer does not have additional parameters.\n**Mathematical Formulation**\n\\f[\no_{i} =\\gamma b_{i} + \\beta\n\\f]\n**Example**\n\n```\n<layer ... type=\"ScaleShift\" ... >\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Crop",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *axis* is a number of a dimension to be used for cropping. For example, *axis* equal to 1 means that cropping is performed over the first dimension.",
          "name": "axis",
          "option": "required",
          "type": " a list of unique integers, where each element is greater than or equal to 0 and less than input shape length."
        },
        {
          "default": 1,
          "description": " *offset* denotes the starting point for crop in the input blob. For example, *offset* equal to 2 means that crop is starting from the second value in the given axis.",
          "name": "offset",
          "option": "required",
          "type": " a list of integers of the length equal to the length of *axis* attribute. In the list, `offset[i]` is greater than or equal to 0 and less than or equal to `input_shape[axis[i]] - crop_size[axis[i]]`, where `crop_size` is the shape of the second input."
        }
      ],
      "category": "Data",
      "description": "**Short description**: *Crop* layer changes selected dimensions of the input blob according to the specified parameters.\n**Parameters**: *Crop* layer parameters should be specified in `data` section, which is placed as a child of the layer node. Due to various representation of Crop attributes in existing frameworks, this layer can be described in three independent ways: *Crop* **Type 1** layer takes two input blobs, and the shape of the second blob specifies the *Crop* size. The layer has two attributes: *axis* and *offset*. Crop layer takes two input blobs, and the shape of the second blob specifies the *Crop* size.  The *Crop* layer of this type supports shape inference.\n**Inputs**\n*   **1**:  Multidimensional input blob *(for example, NCHW, NCH, or NC)*\n*   **2**:  Shape of this input will be used for crop\n**Example**\n\n```html\n<layer id=\"39\" name=\"score_pool4c\" precision=\"FP32\" type=\"Crop\">\n    <data axis=\"2,3\" offset=\"0,0\"/>\n    <input>\n        <port id=\"0\">\n            <dim>1</dim>\n            <dim>21</dim>\n            <dim>44</dim>\n            <dim>44</dim>\n        </port>\n        <port id=\"1\">\n            <dim>1</dim>\n            <dim>21</dim>\n            <dim>34</dim>\n            <dim>34</dim>\n        </port>\n    </input>\n    <output>\n        <port id=\"2\">\n            <dim>1</dim>\n            <dim>21</dim>\n            <dim>34</dim>\n            <dim>34</dim>\n        </port>\n    </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "BatchNormalization",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *epsilon* is the number to be added to the variance to avoid division by zero when normalizing the value. For example, *epsilon* equal 0.001 means that 0.001 is added to the variance.",
          "name": "epsilon",
          "option": "required",
          "type": "float32"
        }
      ],
      "category": "Normalization",
      "description": "**Short description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/batchnorm.html)\n**Detailed description**: [Reference](https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html)\n**Parameters**: *BatchNormalization* layer parameters should be specified as the `batch_norm_data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*BatchNormalization* is the normalization of the output in each hidden layer.\n*   **Input**: Values of \\f$x\\f$ over a mini-batch:\n    \\f[\n    \\beta = \\{ x_{1...m} \\}\n    \\f]\n*   **Parameters to learn**: \\f$ \\gamma, \\beta\\f$\n*   **Output**:\n    \\f[\n    \\{ o_{i} = BN_{\\gamma, \\beta} ( b_{i} ) \\}\n    \\f]\n*   **Mini-batch mean**:\n    \\f[\n    \\mu_{\\beta} \\leftarrow \\frac{1}{m}\\sum_{i=1}^{m}b_{i}\n    \\f]\n*   **Mini-batch variance**:\n    \\f[\n    \\sigma_{\\beta }^{2}\\leftarrow \\frac{1}{m}\\sum_{i=1}^{m} ( b_{i} - \\mu_{\\beta} )^{2}\n    \\f]\n*   **Normalize**:\n    \\f[\n    \\hat{b_{i}} \\leftarrow \\frac{b_{i} - \\mu_{\\beta}}{\\sqrt{\\sigma_{\\beta }^{2} + \\epsilon }}\n    \\f]\n*   **Scale and shift**:\n    \\f[\n    o_{i} \\leftarrow \\gamma\\hat{b_{i}} + \\beta = BN_{\\gamma ,\\beta } ( b_{i} )\n    \\f]\n**Example**\n\n```html\n<layer ... type=\"BatchNormalization\" ... >\n    <batch_norm_data epsilon=\"9.99e-06\" />\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Normalize",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *across_spatial* is a flag that denotes if normalization is performed over CHW or HW. For example, *across_spatial* equals 0 means that normalization is not shared across channels.",
          "name": "across_spatial",
          "option": "required",
          "type": "\n    * 0\n    * 1 - not supported"
        },
        {
          "default": 1,
          "description": " *channel_shared* is a flag that denotes if scale parameters are shared across channels. For example, *channel_shared* equal 0 means that scale parameters are not shared across channels.",
          "name": "channel_shared",
          "option": "required",
          "type": "\n    * 0 - scale parameters are not shared across channels\n    * 1 - not supported"
        },
        {
          "default": 1,
          "description": " *eps* is the epsilon used to avoid division by zero when normalizing the value. For example, *eps* equals 0.001 means that 0.001 is used if all the values in normalization are equal to zero.",
          "name": "eps",
          "option": "required",
          "type": "float32"
        }
      ],
      "category": "Normalization",
      "description": "**Short description**: *Normalize* layer performs l-p normalization of 1 of input blob.\n**Parameters**: *Normalize* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n\\f[\no_{i} = \\sum_{i}^{H*W}\\frac{\\left ( n*C*H*W \\right )* scale}{\\sqrt{\\sum_{i=0}^{C*H*W}\\left ( n*C*H*W \\right )^{2}}}\n\\f]\n**Example**\n\n```html\n<layer ... type=\"Normalize\" ... >\n    <data across_spatial=\"0\" channel_shared=\"0\" eps=\"0.000000\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Tile",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *axis* is the index of the axis to tile. For example, *axis* equals 3 means that fourth axis is used for tiling.",
          "name": "axis",
          "option": "required",
          "type": "int32"
        },
        {
          "description": " *tiles* is a size of the specified axis in the output blob. For example, *tiles* equal 88 means that output blob gets 88 copies of data from specified axis.",
          "name": "tiles",
          "option": "required",
          "type": "int32"
        }
      ],
      "description": "**Short description**: *Tile* layer extends input blob with copies of data along specific axis.\n**Detailed description**: [Reference](http://caffe.help/manual/layers/tile.html)\n**Parameters**: *Tile* layer parameters should be specified as the `tile_data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*Tile* extends input blobs and filling in output blobs following rules:\n\\f[\nout_i=input_i[inner\\_dim*t]\n\\f]\n\\f[\nt \\in \\left ( 0, \\quad tiles \\right )\n\\f]\n**Example**\n\n```html\n<layer ... type=\"Tile\" ... >\n    <tile_data axis=\"3\" tiles=\"88\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Permute",
    "schema": {
      "attributes": [
        {
          "description": " *order* is the set of dimensions indexes for output blob. For example, *order* equal 0,2,3,1 means that the output blob has following dimensions: first dimension from the input blob, third dimension from the input blob, fourth dimension from the input blob, second dimension from the input blob.",
          "name": "order",
          "option": "required",
          "type": "int32[]"
        }
      ],
      "category": "Shape",
      "description": "**Short description**: *Permute* layer performs reordering of input blob dimensions.\n**Detailed description**: [Reference](http://caffe.help/manual/layers/tile.html)\n**Parameters**: *Permute* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*Permute* layer performs reordering input blob. Source indexes and destination indexes are bound by formula:\n\\f[\nsrc\\_ind_{offset} = n * ordered[1] * ordered[2] * ordered[3] + (h * ordered[3] + w)\n\\f]\n\\f[\nn \\in ( 0, order[0] )\n\\f]\n\\f[\nh \\in ( 0, order[2] )\n\\f]\n\\f[\nw \\in ( 0, order[3] )\n\\f]\n**Example**\n\n```html\n<layer ... type=\"Permute\" ... >\n    <data order=\"0,2,3,1\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "PriorBox",
    "schema": {
      "attributes": [
        {
          "name": "min_size",
          "option": "required",
          "type": "float32"
        },
        {
          "name": "max_size",
          "option": "required",
          "type": "float32"
        },
        {
          "default": 1,
          "description": " *aspect_ratio* is a variance of aspect ratios. Duplicate values are ignored. For example, *aspect_ratio* equal 2.000000,3.000000 means that for the first box aspect_ratio is equal to 2 and for the second box - 3.",
          "name": "aspect_ratio",
          "option": "required",
          "type": "float32"
        },
        {
          "default": false,
          "description": " *flip* is a flag that denotes that each *aspect_ratio* is duplicated and flipped. For example, *flip* equals 1 and *aspect_ratio* equals 3 mean that aspect_ratio is equal to 1/3.",
          "name": "flip",
          "option": "required",
          "type": "boolean"
        },
        {
          "default": false,
          "description": " *clip* is a flag that denotes if each value in the output blob is within [0,1]. For example, *clip* equal 1 means that each value in the output blob is within [0,1].",
          "name": "clip",
          "option": "required",
          "type": "boolean"
        },
        {
          "description": " *step* is a distance between box centers. For example, *step* equal 85 means that the distance between neighborhood prior boxes centers is 85.",
          "name": "step",
          "option": "required",
          "type": "float32"
        },
        {
          "default": 0.5,
          "description": " *offset* is a shift of box respectively to top left corner. For example, *offset* equal 85 means that the shift of neighborhood prior boxes centers is 85.",
          "name": "offset",
          "option": "required",
          "type": "float32"
        },
        {
          "description": " *variance* denotes a variance of adjusting bounding boxes. For example, *variance* equals 85 means that the shift of neighborhood prior boxes centers is 85.",
          "name": "variance",
          "option": "required",
          "type": "float32[]"
        },
        {
          "default": 1,
          "description": " *scale_all_sizes* is a flag that denotes type of inference. For example, *scale_all_sizes* equals 0 means that priorbox layer is inferd in MXNet-like manner. In particular, *max_size* parameter is ignored.",
          "name": "scale_all_sizes",
          "option": "required",
          "type": "int32"
        }
      ],
      "description": "**Short description**: *PriorBox* layer generates prior boxes of specified sizes and aspect ratios across all dimensions.\n**Parameters**: *PriorBox* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**:\n*PriorBox* computes coordinates of prior boxes by following:\n1.  First calculates *center_x* and *center_y* of prior box:\n    \\f[\n    W \\equiv Width \\quad Of \\quad Image\n    \\f]\n    \\f[\n    H \\equiv Height \\quad Of \\quad Image\n    \\f]\n    *   If step equals 0:\n        \\f[\n        center_x=(w+0.5)\n        \\f]\n        \\f[\n        center_y=(h+0.5)\n        \\f]\n    *   else:\n        \\f[\n        center_x=(w+offset)*step\n        \\f]\n        \\f[\n        center_y=(h+offset)*step\n        \\f]\n        \\f[\n        w \\subset \\left( 0, W \\right )\n        \\f]\n        \\f[\n        h \\subset \\left( 0, H \\right )\n        \\f]\n2.  Then, for each \\f$ s \\subset \\left( 0, min_sizes \\right ) \\f$ calculates coordinates of priorboxes:\n    \\f[\n    xmin = \\frac{\\frac{center_x - s}{2}}{W}\n    \\f]\n    \\f[\n    ymin = \\frac{\\frac{center_y - s}{2}}{H}\n    \\f]\n    \\f[\n    xmax = \\frac{\\frac{center_x + s}{2}}{W}\n    \\f]\n    \\f[\n    ymin = \\frac{\\frac{center_y + s}{2}}{H}\n    \\f]\n**Example**\n\n```html\n<layer ... type=\"PriorBox\" ... >\n    <data step=\"64.000000\" min_size=\"162.000000\" max_size=\"213.000000\" offset=\"0.500000\" flip=\"1\" clip=\"0\" aspect_ratio=\"2.000000,3.000000\" variance=\"0.100000,0.100000,0.200000,0.200000\" />\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "SimplerNMS",
      "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *pre_nms_topn (post_nms_topn)* is the quantity of bounding boxes before (after) applying NMS operation. For example, *pre_nms_topn (post_nms_topn)* equals 15 means that the minimum (maximum) box size is 15.",
          "name": "pre_nms_topn (post_nms_topn)",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *cls_threshold* is the minimum value of the proposal to be taken into consideration. For example, *cls_threshold* equal 0.5 means that all boxes with prediction probability less than 0.5 are filtered out.",
          "name": "cls_threshold",
          "option": "required",
          "type": "float32"
        },
        {
          "default": 1,
          "description": " *iou_threshold* is the minimum ratio of boxes overlapping to be taken into consideration. For example, *iou_threshold* equal 0.7 means that all boxes with overlapping ratio less than 0.7 are filtered out.",
          "name": "iou_threshold",
          "option": "required",
          "type": "float32"
        },
        {
          "default": 1,
          "description": " *feat_stride* is the step size to slide over boxes (in pixels). For example, *feat_stride* equal 16 means that all boxes are analyzed with the slide 16.",
          "name": "feat_stride",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *min_bbox_size* is the minimum size of box to be taken into consideration. For example, *min_bbox_size* equal 35 means that all boxes with box size less than 35 are filtered out.",
          "name": "min_bbox_size",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *scale* is array of scales for anchor boxes generating.",
          "name": "scale",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: *SimplerNMS* layer performs filtering of bounding boxes and outputs only those with the highest confidence of prediction.\n**Parameters**: *SimplerNMS* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*SimplerNMS* accepts three inputs with four dimensions. Produced blob has two dimensions, the first one equals *post_nms_topn*.\n*SimplerNMS* does the following with the input blob:\n1.  Generates initial anchor boxes. Left top corner of all boxes is (0, 0). Width and height of boxes are calculated based on scaled (according to the scale parameter) default widths and heights\n2.  For each point in the first input blob:\n    *   pins anchor boxes to picture according to the second input blob, which contains four deltas for each box: for x and y of center, for width, and for height\n    *   finds out score in the first input blob\n3.  Filters out boxes with size less than *min_bbox_size.*\n4.  Sorts all proposals (*box, score*) by score from highest to lowest\n5.  Takes top *pre_nms_topn* proposals\n6.  Calculates intersections for boxes and filters out all with \\f$intersection/union > iou\\_threshold\\f$\n7.  Takes top *post_nms_topn* proposals\n8.  Returns top proposals\n**Example**\n\n```html\n<layer ... type=\"SimplerNMS\" ... >\n    <data cls_threshold=\"0.500000\" iou_threshold=\"0.700000\" min_bbox_size=\"16\" feat_stride=\"16\" pre_nms_topn=\"6000\" post_nms_topn=\"150\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "DetectionOutput",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " number of classes to be predicted",
          "name": "num_classes",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " background label id. If there is no background class, set it to -1.",
          "name": "background_label_id",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " maximum number of results to be kept on NMS stage",
          "name": "top_k",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " if \"true\", variance is encoded in target. Otherwise, we need to adjust the predicted offset accordingly.",
          "name": "variance_encoded_in_target",
          "option": "required",
          "type": " logical values"
        },
        {
          "default": 1,
          "description": " number of total bboxes to be kept per image after NMS step. -1 means keeping all bboxes after NMS step.",
          "name": "keep_top_k",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": null,
          "name": "num_orient_classes",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " type of coding method for bounding boxes. caffe.PriorBoxParameter.CENTER_SIZE and others.",
          "name": "code_type",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " bounding boxes are shared among different classes.",
          "name": "share_location",
          "option": "required",
          "type": " logical values"
        },
        {
          "default": 1,
          "description": null,
          "name": "interpolate_orientation",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " threshold to be used in NMS stage",
          "name": "nms_threshold",
          "option": "required",
          "type": "float32"
        },
        {
          "default": 1,
          "description": " only consider detections whose confidences are larger than a threshold. If not provided, consider all boxes.",
          "name": "confidence_threshold",
          "option": "required",
          "type": "float32"
        }
      ],
      "description": "**Short description**: *DetectionOutput* layer performs non-maximum suppression to generate the detection output using information on location and confidence predictions.\n**Detailed description**: [Reference](https://arxiv.org/pdf/1512.02325.pdf)\n**Parameters**: *DetectionOutput* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\nAt each feature map cell, *DetectionOutput* predicts the offsets relative to the default box shapes in the cell, as well as the per-class scores that indicate the presence of a class instance in each of those boxes. Specifically, for each box out of k at a given location, *DetectionOutput* computes class scores and the four offsets relative to the original default box shape. This results in a total of \\f$(c + 4)k\\f$ filters that are applied around each location in the feature map, yielding \\f$(c + 4)kmn\\f$ outputs for a m \u00d7 n feature map.\n**Example**\n\n```html\n<layer ... type=\"DetectionOutput\" ... >\n    <data num_classes=\"21\" share_location=\"1\" background_label_id=\"0\" nms_threshold=\"0.450000\" top_k=\"400\" eta=\"1.000000\" output_directory=\"\" output_name_prefix=\"\" output_format=\"\" label_map_file=\"\" name_size_file=\"\" num_test_image=\"0\" prob=\"1.000000\" resize_mode=\"caffe.ResizeParameter.WARP\" height=\"0\" width=\"0\" height_scale=\"0\" width_scale=\"0\" pad_mode=\"caffe.ResizeParameter.CONSTANT\" pad_value=\"#\" interp_mode=\"#\" code_type=\"caffe.PriorBoxParameter.CENTER_SIZE\" variance_encoded_in_target=\"0\" keep_top_k=\"200\" confidence_threshold=\"0.010000\" visualize=\"0\" visualize_threshold=\"0.000000\" save_file=\"\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Memory",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *id* is the id of the pair of *Memory* layers. For example, *id* equals r_27-28 means that layers with id 27 and 28 are in one pair.",
          "name": "id",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *index* represents if the given layer is input or output. For example, *index* equal 0 means this layer is output one.",
          "name": "index",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *size* represents the size of the group. For example, *size* equals 2 means this group is a pair.",
          "name": "size",
          "option": "required",
          "type": "int32"
        }
      ],
      "description": "**Short description**: *Memory* layer represents delay layer in terms of LSTM terminology. To read more about LSTM topologies please refer this [link](http://colah.github.io/posts/2015-08-Understanding-LSTMs).\n**Detailed description**: *Memory* layer saves state between two infer requests. In the topology, it is the single layer, however, in the Intermediate Representation, it is always represented as a pair of **Memory** layers. One of these layers does not have outputs and another does not have inputs (in terms of the Intermediate Representation).\n**Parameters**: *Memory* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*Memory* save data from the input blob.\n**Example**\n\n```html\n<layer ... type=\"Memory\" ... >\n    <data id=\"r_27-28\" index=\"0\" size=\"2\" />\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Clamp",
    "schema": {
      "attributes": [
        {
          "default": 0,
          "description": " *min* is the lower bound of values in the output shape. Any value in the input shape that is smaller than the bound, is replaced by the *min* value. For example, *min* equal 10 means that any value in the input shape that is smaller than the bound, is replaced by 10.",
          "name": "min",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *max* is the upper bound of values in the output shape. Any value in the input shape that is greater than the bound, is replaced by the *max* value. For example, *max* equals 50 means that any value in the input shape that is greater than the bound, is replaced by 50.",
          "name": "max",
          "option": "required",
          "type": "int32"
        }
      ],
      "description": "**Short description**: *Clamp* layer represents clipping activation operation.\n**Detailed description**: [Reference](https://www.tensorflow.org/versions/r1.2/api_docs/MO_DG/prepare_model/python/tf/clip_by_value)\n**Parameters**: *Clamp* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*Clamp* generally does the following with the input blobs:\n\\f[\nout_i=\\left\\{\\begin{array}{ll}\n\tmax\\_value \\quad \\mbox{if } \\quad input_i>max\\_value \\\\\n\tmin\\_value \\quad \\mbox{if } \\quad input_i\n\\end{array}\\right.\n\\f]\n**Example**\n\n```html\n<layer ... type=\"Clamp\" ... >\n    <data min=\"10\" max=\"50\" />\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "ArgMax",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " if *out_max_val* equals 1, output is a vector of pairs *(max_ind, max_val)*, unless axis is set. Then output is *max_val* along the specified axis.",
          "name": "top_k",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " if *out_max_val* equals 1, output is a vector of pairs *(max_ind, max_val)*, unless axis is set. Then output is *max_val* along the specified axis.",
          "name": "top_k",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " if set, maximizes along the specified axis, else maximizes the flattened trailing dimensions for each index of the first / num dimension.",
          "name": "axis",
          "option": "required",
          "type": "int32"
        }
      ],
      "description": "**Short description**: *ArgMax* layer compute the index of the *K* maximum values for each datum across all dimensions *CxHxW*.\n**Detailed description**: Intended for use after a classification layer to produce a prediction. If parameter *out_max_val* is set to \"true\", output is a vector of pairs *(max_ind, max_val)* for each image. The *axis* parameter specifies an axis along which to maximize.\n**Parameters**: *ArgMax* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*ArgMax* generally does the following with the input blobs:\n\\f[\no_{i} = \\left\\{\nx| x \\in S  \\wedge \\forall y \\in S : f(y) \\leq f(x)\n\\right\\}\n\\f]\n**Example**\n\n```html\n<layer ... type=\"ArgMax\" ... >\n    <data top_k=\"10\" out_max_val=\"1\" axis=\"-1\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "PSROIPooling",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " pooled output channel number",
          "name": "output_dim",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " number of groups to encode position-sensitive score maps",
          "name": "group_size",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " multiplicative spatial scale factor to translate ROI coordinates from their input scale to the scale used when pooling",
          "name": "spatial_scale",
          "option": "required",
          "type": "float32"
        }
      ],
      "category": "Pool",
      "description": "**Short description**: *PSROIPooling* layer compute position-sensitive max pooling on regions of interest specified by input, takes as input N position-sensitive score maps and a list of R regions of interest.\n**Detailed description**: [Reference](https://arxiv.org/pdf/1703.06211.pdf)\n**Parameters**: *PSRoiPooling* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\nThe output value for \\f$(i, j)\\f$-th bin is obtained by summation from one score map \\f$x_{i,j}\\f$ corresponding to that bin. In short, the difference from *RoIPooling* is that a general feature map \\f$x\\f$ is replaced by a specific positive-sensitive score map \\f$x_{i,j}\\f$.\n**Example**\n\n```html\n<layer ... type=\"PSROIPooling\" ... >\n    <data output_dim=\"10\" out_max_val=\"1\" spatial_scale=\"0.1\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "GRN",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *bias* is added to the variance.",
          "name": "bias",
          "option": "required",
          "type": "float32"
        }
      ],
      "category": "Normalization",
      "description": "**Short description**: *GRN* is Global Response Normalization with L2 norm (across channels only).\n**Parameters**: GRN layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*GRN* computes L2 norm by channels for input blob. *GRN* generally does the following with the input blob:\n\\f[\noutput_{i} = \\frac{input_{i}}{\\sqrt{\\sum_{i}^{C} input_{i}}}\n\\f]\n**Example**\n\n```html\n<layer ... type=\"GRN\" ... >\n    <data bias=\"1.0\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "PReLU",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *channel_shared* shows if negative slope shared across channels or not.",
          "name": "channel_shared",
          "option": "required",
          "type": "int32"
        },
        {
          "description": " *filler_type* defines initialization type for negative slope.",
          "name": "filler_type",
          "option": "required",
          "type": "string"
        },
        {
          "default": 1,
          "description": " *filler_value* defines the value in constant filler.",
          "name": "filler_value",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *min(max)* defines the minimal(maximal) value in uniform filler.",
          "name": "min(max)",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *mean* defines the mean value in Gaussian filler.",
          "name": "mean",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Activation",
      "description": "**Short description**: *PReLU* is the Parametric Rectifier Linear Unit. The difference from *ReLU* is that negative slopes can vary across channels.\n**Parameters**: *PReLU* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*PReLU* accepts one input with four dimensions. The produced blob has the same dimensions as input.\n*PReLU* does the following with the input blob:\n\\f[\no_{i} = max(0, x_{i}) + w_{i} * min(0,x_{i})\n\\f]\nwhere \\f$w_{i}\\f$ is from weights blob.\n**Example**\n\n```html\n<layer ... type=\"PReLU\" ... >\n    <data bias=\"1.0\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "RegionYolo",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *coords* is num coordinates for each region",
          "name": "coords",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *classes* is num classes for each region",
          "name": "classes",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *num* is number of regions",
          "name": "num",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *do_softmax* is a flag which specifies the method of infer",
          "name": "do_softmax",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *anchors* coordinates regions",
          "name": "anchors",
          "option": "required",
          "type": "float32[]"
        },
        {
          "default": 1,
          "description": " *mask* specifies which anchors to use",
          "name": "mask",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *mask* specifies which anchors to use",
          "name": "mask",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *axis* is the number of the dimension from which flattening is performed. For example, *axis* equals 1 means that flattening is started from the 1st dimension.",
          "name": "axis",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *end_axis* is the number of the dimension on which flattening is ended. For example, *end_axis* equals -1 means that flattening is performed till the last dimension.",
          "name": "end_axis",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: *RegionYolo* computes coordinates of regions with probability for each class.\n**Detailed description**:  [Reference][p_yolo]\n**Parameters**: *RegionYolo* layer parameters should be specified as the `data` node, which is a child of the `layer` node.\n**Example**\n\n```html\n<layer ... type=\"RegionYolo\" ... >\n    <data bias=\"1.0\"/>\n    <input> ... </input>\n    <output> ... </output>\n    <weights .../>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "ReorgYolo",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *stride* is distance of cut throws in output blobs.",
          "name": "stride",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: *ReorgYolo* reorganizes input blob taking into account strides.\n**Detailed description**: [Reference][p_yolo]\n**Parameters**: *ReorgYolo* layer parameters should be specified as the `data` node, which is a child of the `layer` node.\n**Example**\n\n```html\n<layer ... type=\"ReorgYolo\" ... >\n    <data stride=\"1\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "PriorBoxClustered",
    "schema": {
      "attributes": [
        {
          "description": " *width* is a parameter that specifies desired boxes widths in pixels.",
          "name": "width",
          "option": "required",
          "type": "float32[]"
        },
        {
          "name": "height",
          "option": "required",
          "type": "float32[]"
        },
        {
          "default": false,
          "description": " *clip* is a flag that denotes if each value in the output blob is within [0,1]. For example, *clip* equal 1 means that each value in the output blob is within [0,1].",
          "name": "clip",
          "option": "required",
          "type": "boolean"
        },
        {
          "default": false,
          "description": " *flip* is a flag that denotes whether the list of boxes is augmented with the flipped ones.",
          "name": "flip",
          "option": "required",
          "type": "boolean"
        },
        {
          "description": " *step* is a distance between box centers. For example, *step* equal 85 means that the distance between neighborhood prior boxes centers is 85.",
          "name": "step",
          "option": "required",
          "type": "float32"
        },
        {
          "name": "step_w",
          "option": "required",
          "type": "float32"
        },
        {
          "name": "step_h",
          "option": "required",
          "type": "float32"
        },
        {
          "default": 1,
          "description": " *offset* is a shift of box respectively to top left corner. For example, *offset* equal 85 means that the shift of neighborhood prior boxes centers is 85.",
          "name": "offset",
          "option": "required",
          "type": "float32"
        },
        {
          "description": " *variance* denotes a variance of adjusting bounding boxes. For example, *variance* equal 85 means that the shift of neighborhood prior boxes centers is 85.",
          "name": "variance",
          "option": "required",
          "type": "float32[]"
        },
        {
          "description": " *img_h* specifies height of input image. These parameters are calculated unless provided explicitly.",
          "name": "img_h",
          "option": "required",
          "type": "float32"
        },
        {
          "name": "img_w",
          "option": "required",
          "type": "float32"
        }
      ],
      "description": "**Short description**: *PriorBoxClustered* layer generates prior boxes of specified sizes.\n**Parameters**: *PriorBoxClustered* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*PriorBoxClustered* computes coordinates of prior boxes by following:\n1.  Calculates the *center_x* and *center_y* of prior box:\n    \\f[\n    W \\equiv Width \\quad Of \\quad Image\n    \\f]\n    \\f[\n    H \\equiv Height \\quad Of \\quad Image\n    \\f]\n    \\f[\n    center_x=(w+offset)*step\n    \\f]\n    \\f[\n    center_y=(h+offset)*step\n    \\f]\n    \\f[\n    w \\subset \\left( 0, W \\right )\n    \\f]\n    \\f[\n    h \\subset \\left( 0, H \\right )\n    \\f]\n2.  For each \\f$s \\subset \\left( 0, W \\right )\\f$ calculates the prior boxes coordinates:\n    \\f[\n    xmin = \\frac{center_x - \\frac{width_s}{2}}{W}\n    \\f]\n\t\\f[\n\tymin = \\frac{center_y - \\frac{height_s}{2}}{H}\n\t\\f]\n\t\\f[\n\txmax = \\frac{center_x - \\frac{width_s}{2}}{W}\n\t\\f]\n\t\\f[\n\tymax = \\frac{center_y - \\frac{height_s}{2}}{H}\n\t\\f]\nIf *clip* is defined, the coordinates of prior boxes are recalculated with the formula:\n\\f$coordinate = \\min(\\max(coordinate,0), 1)\\f$\n**Example**\n\n```html\n<layer ... type=\"PriorBoxClustered\">\n    <data clip=\"0\" flip=\"0\" height=\"44.0,10.0,30.0,19.0,94.0,32.0,61.0,53.0,17.0\" offset=\"0.5\" step=\"16.0\" variance=\"0.1,0.1,0.2,0.2\"\n     width=\"86.0,13.0,57.0,39.0,68.0,34.0,142.0,50.0,23.0\"/>\n    <input>\n        ...\n    </input>\n    <output>\n        ...\n    </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "MVN",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *across_channels* is a flag that denotes if mean values are shared across channels. For example, *across_channels* equal 0 means that mean values are not shared across channels.",
          "name": "across_channels",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *normalize_variance* is a flag that denotes whether to perform variance normalization.",
          "name": "normalize_variance",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *eps* is the number to be added to the variance to avoid division by zero when normalizing the value. For example, *epsilon* equal 0.001 means that 0.001 is added to the variance.",
          "name": "eps",
          "option": "required",
          "type": "float32"
        }
      ],
      "category": "Normalization",
      "description": "**Short description**: [Reference](http://caffe.berkeleyvision.org/tutorial/layers/mvn.html)\n**Parameters**: *MVN* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*MVN* subtracts mean from the input blob:\n\\f[\no_{i} = i_{i} - \\frac{\\sum{i_{k}}}{C * H * W}\n\\f]\nIf *normalize_variance* is set to 1, the output blob is divided by variance:\n\\f[\no_{i}=\\frac{o_{i}}{\\sum \\sqrt {o_{k}^2}+\\epsilon}\n\\f]\n**Example**\n\n```html\n<layer ... type=\"MVN\">\n    <data across_channels=\"1\" eps=\"9.999999717180685e-10\" normalize_variance=\"1\"/>\n    <input>\n        ...\n    </input>\n    <output>\n        ...\n    </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "CTCGreadyDecoder",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *ctc_merge_repeated* is a flag for collapsing the repeated labels during the ctc calculation.",
          "name": "ctc_merge_repeated",
          "option": "required",
          "type": "int32"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: *CTCGreadyDecoder* performs greedy decoding on the logits given in input (best path).\n**Detailed description**: [Reference](https://www.tensorflow.org/api_docs/python/tf/nn/ctc_greedy_decoder)\n**Parameters**: *CTCGreadyDecoder* layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\nGiven an input sequence \\f$X\\f$ of length \\f$T\\f$, *CTCGreadyDecoder* assumes the probability of a length \\f$T\\f$ character sequence \\f$C\\f$ is given by\n\\f[\np(C|X) = \\prod_{t=1}^{T} p(c_{t}|X)\n\\f]\n**Example**\n\n```html\n<layer ... type=\"CTCGreadyDecoder\" ... >\n    <data stride=\"1\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Proposal",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *pre_nms_topn (post_nms_topn)* is the quantity of bounding boxes before (after) applying NMS operation. For example, *pre_nms_topn (post_nms_topn)* equal 15 means that the minimum (maximum) box size is 15.",
          "name": "pre_nms_topn (post_nms_topn)",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *nms_thresh* is the minimum value of the proposal to be taken into consideration. For example, *nms_thresh* equal 0.5 means that all boxes with prediction probability less than 0.5 are filtered out.",
          "name": "nms_thresh",
          "option": "required",
          "type": "float32"
        },
        {
          "default": 1,
          "description": " *feat_stride* is the step size to slide over boxes (in pixels). For example, *feat_stride* equal 16 means that all boxes are analyzed with the slide 16.",
          "name": "feat_stride",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *min_size* is the minimum size of box to be taken into consideration. For example, *min_size* equal 35 means that all boxes with box size less than 35 are filtered out.",
          "name": "min_size",
          "option": "required",
          "type": "int32"
        },
        {
          "default": 1,
          "description": " *ratio* is the ratios for anchor generation.",
          "name": "ratio",
          "option": "required",
          "type": "float32[]"
        },
        {
          "default": 1,
          "description": " *ratio* is the ratios for anchor generation.",
          "name": "ratio",
          "option": "required",
          "type": "float32[]"
        },
        {
          "default": 1,
          "description": " *scale* is the scales for anchor generation.",
          "name": "scale",
          "option": "required",
          "type": "float32[]"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: *Proposal* layer performs filtering of only those bounding boxes and outputs with the highest confidence of prediction.\n**Parameters**: Proposal layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n*Proposal* layer accepts three inputs with four dimensions. The produced blob has two dimensions: first one equals *batch_size * post_nms_topn*.\n*Proposal* does the following with the input blob:\n1.  Generates initial anchor boxes Left top corner of all boxes in (0, 0). Width and height of boxes are calculated from *base_size* with scale and ratio parameters\n2.  For each point in the first input blob:\n    *   pins anchor boxes to the image according to the second input blob that contains four deltas for each box: for *x* and *y* of center, for *width* and for *height*\n    *   finds out score in the first input blob\n3.  Filters out boxes with size less than *min_size*\n4.  Sorts all proposals (*box*, *score*) by score from highest to lowest\n5.  Takes top *pre_nms_topn* proposals\n6.  Calculates intersections for boxes and filter out all with \\f$intersection/union > nms\\_thresh\\f$\n7.  Takes top *post_nms_topn* proposals\n8.  Returns top proposals\n**Example**\n\n```html\n<layer ... type=\"Proposal\" ... >\n    <data base_size=\"16\" feat_stride=\"16\" min_size=\"16\" nms_thresh=\"0.6\" post_nms_topn=\"200\" pre_nms_topn=\"6000\"\n     ratio=\"2.67\" scale=\"4.0,6.0,9.0,16.0,24.0,32.0\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Resample",
    "schema": {
      "attributes": [
        {
          "default": 1,
          "description": " *type* parameter specifies type of blob interpolation.",
          "name": "type",
          "option": "required",
          "type": "\n    * *LINEAR* - linear blob interpolation\n    * *CUBIC* - cubic blob interpolation\n    * *NEAREST* - nearest-neighbor blob interpolation"
        },
        {
          "default": 1,
          "description": " *antialias* is a flag that denotes whether to perform anti-aliasing.",
          "name": "antialias",
          "option": "required",
          "type": "\n    * 0 - anti-aliasing is not performed\n    * 1 - anti-aliasing is performed"
        }
      ],
      "category": "Layer",
      "description": "**Short description**: *Resample* layer scales the input blob by the specified parameters.\n**Parameters**: Resample layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Example**\n\n```html\n<layer type=\"Resample\">\n  <data antialias=\"0\" factor=\"1.0\" height=\"227\" type=\"caffe.ResampleParameter.LINEAR\" width=\"227\"/>\n      <input>\n      ...\n      </input>\n      <output>\n      ...\n      </output>\n\u200b</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Power",
    "schema": {
      "attributes": [],
      "description": "**Short description**: *Power* layer computes the output as (shift + scale * x) ^ power for each input element x.\n**Parameters**: Power layer parameters should be specified as the `data` node, which is a child of the layer node.\n**Mathematical Formulation**\n\\f[\np = (shift + scale * x)^{power}\n\\f]\n**Example**\n\n```html\n<layer ... type=\"Power\" ... >\n    <data power=\"2\" scale=\"0.1\" shift=\"5\"/>\n    <input> ... </input>\n    <output> ... </output>\n</layer>\n```",
      "inputs": null,
      "outputs": null,
      "support_level": "default"
    }
  },
  {
    "name": "Flatten",
    "schema": {
      "category": "Shape",
      "attributes": [
        { "name": "axis", "type": "int32" },
        { "name": "end_axis", "type": "int32", "default": -1 }
      ]
    }
  },
  {
    "name": "Pad",
    "schema": {
      "category": "Tensor",
      "attributes": [
        { "name": "pad_value", "type": "float32" },
        { "name": "pads_begin", "type": "int32[]" },
        { "name": "pads_end", "type": "int32[]" },
        { "name": "pad_mode" }
      ]
    }
  },
  {
    "name": "GRUCell",
    "schema": {
      "category": "Layer"
    }
  },
  {
    "name": "LSTMCell",
    "schema": {
      "category": "Layer"
    }
  },
  {
    "name": "MaxPool",
    "schema": {
      "category": "Pool"
    }
  },
  {
    "name": "Transpose",
    "schema": {
      "category": "Transform"
    }
  },
  {
    "name": "Squeeze",
    "schema": {
      "category": "Transform"
    }
  },
  {
    "name": "Unsqueeze",
    "schema": {
      "category": "Transform"
    }
  },
  {
    "name": "Gather",
    "schema": {
      "category": "Transform"
    }
  }
]