img_util.py 2.9 KB
Newer Older
走神的阿圆's avatar
走神的阿圆 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2020 VisualDL Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =======================================================================
import math
from functools import reduce

import numpy as np

from visualdl.component.base_component import convert_to_HWC


def padding_image(img, height, width):
    height_old, width_old, _ = img.shape
    height_before = math.floor((height - height_old) / 2)
    height_after = height - height_old - height_before

    width_before = math.floor((width - width_old) / 2)
    width_after = width - width_old - width_before

31 32 33
    return np.pad(array=img,
                  pad_width=((height_before, height_after), (width_before, width_after), (0, 0)),
                  mode="constant")
走神的阿圆's avatar
走神的阿圆 已提交
34 35 36 37 38 39 40 41


def merge_images(imgs, dataformats, scale=1.0, rows=-1):
    assert rows <= len(imgs), "rows should not greater than numbers of pictures"
    # convert format of each image to `hwc`
    for i, img in enumerate(imgs):
        imgs[i] = convert_to_HWC(img, dataformats)

C
chenjian 已提交
42
    channel = imgs[0].shape[2]
走神的阿圆's avatar
走神的阿圆 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    height = -1
    width = -1

    for img in imgs:
        height = height if height > img.shape[0] else img.shape[0]
        width = width if width > img.shape[1] else img.shape[1]

    # padding every sub-image with height and width
    for i, img in enumerate(imgs):
        imgs[i] = padding_image(img, height, width)

    # get row and col
    len_imgs = len(imgs)
    if -1 == rows:
        rows = cols = math.floor(math.sqrt(len_imgs))
        while rows*cols < len_imgs:
            if rows <= cols:
                rows += 1
            else:
                cols += 1
    else:
        cols = math.ceil(len_imgs/rows)

    # add white sub-image
    for i in range(rows*cols-len_imgs):
        imgs = np.concatenate((imgs, np.zeros((height, width, channel), dtype=np.uint8)[None, :]))

    imgs = reduce(lambda x, y: np.concatenate((x, y)), [
        reduce(lambda x, y: np.concatenate((x, y), 1),
               imgs[i * cols: (i + 1) * cols]) for i in range(rows)])

    # choose bigger number of rows and cols

    scale = 1.0/scale * rows if rows > cols else 1.0/scale * cols

    dsize = tuple(map(lambda x: math.floor(x/scale), imgs.shape))[-2::-1]

    try:
        import cv2

        imgs = cv2.resize(src=imgs, dsize=dsize)
    except ImportError:
        from PIL import Image

        imgs = Image.fromarray(imgs)
        imgs.resize(dsize)
        imgs = np.array(imgs)

    return imgs