client_app.py 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
# Copyright (c) 2022 VisualDL Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =======================================================================
import gradio as gr
import numpy as np

from .http_client_manager import get_metric_data
from .http_client_manager import HttpClientManager
from .http_client_manager import metrics_table_head
from .visualizer import visualize_detection
from .visualizer import visualize_face_alignment
from .visualizer import visualize_face_detection
from .visualizer import visualize_headpose
from .visualizer import visualize_keypoint_detection
from .visualizer import visualize_matting
from .visualizer import visualize_ocr
from .visualizer import visualize_segmentation

_http_manager = HttpClientManager()

supported_tasks = {
    'detection': visualize_detection,
    'facedet': visualize_face_detection,
    'keypointdetection': visualize_keypoint_detection,
    'segmentation': visualize_segmentation,
    'matting': visualize_matting,
    'ocr': visualize_ocr,
    'facealignment': visualize_face_alignment,
    'headpose': visualize_headpose,
    'unspecified': lambda x: str(x)
}


def create_gradio_client_app():  # noqa:C901
    css = """
          .gradio-container {
              font-family: 'IBM Plex Sans', sans-serif;
          }
          .gr-button {
              color: white;
              border-color: black;
              background: black;
          }
          input[type='range'] {
              accent-color: black;
          }
          .dark input[type='range'] {
              accent-color: #dfdfdf;
          }
          #gallery {
              min-height: 22rem;
              margin-bottom: 15px;
              margin-left: auto;
              margin-right: auto;
              border-bottom-right-radius: .5rem !important;
              border-bottom-left-radius: .5rem !important;
          }
          #gallery>div>.h-full {
              min-height: 20rem;
          }
          .details:hover {
              text-decoration: underline;
          }
          .gr-button {
              white-space: nowrap;
          }
          .gr-button:focus {
              border-color: rgb(147 197 253 / var(--tw-border-opacity));
              outline: none;
              box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
              --tw-border-opacity: 1;
              --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) \
                var(--tw-ring-offset-color);
              --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
              --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
              --tw-ring-opacity: .5;
          }
          .footer {
              margin-bottom: 45px;
              margin-top: 35px;
              text-align: center;
              border-bottom: 1px solid #e5e5e5;
          }
          .footer>p {
              font-size: .8rem;
              display: inline-block;
              padding: 0 10px;
              transform: translateY(10px);
              background: white;
          }
          .dark .footer {
              border-color: #303030;
          }
          .dark .footer>p {
              background: #0b0f19;
          }
          .prompt h4{
              margin: 1.25em 0 .25em 0;
              font-weight: bold;
              font-size: 115%;
          }
  """

    block = gr.Blocks(css=css)

    with block:
        gr.HTML("""
              <div style="text-align: center; max-width: 650px; margin: 0 auto;">
                <div
                  style="
                    display: inline-flex;
                    gap: 0.8rem;
                    font-size: 1.75rem;
                    justify-content: center;
                  "
                >
                <h1>
                FastDeploy Client
                </h1>
                </div>
                <p font-size: 94%">
                The client is used for creating requests to fastdeploy server.
                </p>
              </div>
          """)
        with gr.Group():
            with gr.Box():
                with gr.Column():
                    with gr.Row():
                        server_addr_text = gr.Textbox(
                            label="服务ip",
                            show_label=True,
                            max_lines=1,
                            placeholder="localhost",
                        )

                        server_http_port_text = gr.Textbox(
                            label="推理服务端口",
                            show_label=True,
                            max_lines=1,
                            placeholder="8000",
                        )

                        server_metric_port_text = gr.Textbox(
                            label="性能服务端口",
                            show_label=True,
                            max_lines=1,
                            placeholder="8002",
                        )
                    with gr.Row():
                        model_name_text = gr.Textbox(
                            label="模型名称",
                            show_label=True,
                            max_lines=1,
                            placeholder="yolov5",
                        )
                        model_version_text = gr.Textbox(
                            label="模型版本",
                            show_label=True,
                            max_lines=1,
                            placeholder="1",
                        )

            with gr.Box():
                with gr.Tab("组件形式"):
                    check_button = gr.Button("获取模型输入输出")
                    component_format_column = gr.Column(visible=False)
                    with component_format_column:
                        task_radio = gr.Radio(
                            choices=list(supported_tasks.keys()),
                            value='unspecified',
                            label='任务类型',
                            visible=True)
                        gr.Markdown("根据模型需要,挑选文本框或者图像框进行输入")
                        with gr.Row():
                            with gr.Column():
                                gr.Markdown("模型输入")
                                input_accordions = []
                                input_name_texts = []
                                input_images = []
                                input_texts = []
                                for i in range(6):
                                    accordion = gr.Accordion(
                                        "输入变量 {}".format(i),
                                        open=True,
                                        visible=False)
                                    with accordion:
                                        input_name_text = gr.Textbox(
                                            label="变量名", interactive=False)
                                        input_image = gr.Image(type='numpy')
                                        input_text = gr.Textbox(
                                            label="文本框", max_lines=1000)
                                    input_accordions.append(accordion)
                                    input_name_texts.append(input_name_text)
                                    input_images.append(input_image)
                                    input_texts.append(input_text)

                            with gr.Column():
                                gr.Markdown("模型输出")
                                output_accordions = []
                                output_name_texts = []
                                output_images = []
                                output_texts = []
                                for i in range(6):
                                    accordion = gr.Accordion(
                                        "输出变量 {}".format(i),
                                        open=True,
                                        visible=False)
                                    with accordion:
                                        output_name_text = gr.Textbox(
                                            label="变量名", interactive=False)
                                        output_text = gr.Textbox(
                                            label="服务返回的原数据",
                                            interactive=False,
                                            show_label=True)
                                        output_image = gr.Image(
                                            interactive=False)
                                    output_accordions.append(accordion)
                                    output_name_texts.append(output_name_text)
                                    output_images.append(output_image)
                                    output_texts.append(output_text)
                        component_submit_button = gr.Button("提交请求")
                with gr.Tab("原始形式"):
                    gr.Markdown("模型输入")
                    raw_payload_text = gr.Textbox(
                        label="负载数据", max_lines=10000)
                    with gr.Column():
                        gr.Markdown("输出")
                        output_raw_text = gr.Textbox(
                            label="服务返回的原始数据", interactive=False)
                    raw_submit_button = gr.Button("提交请求")

            with gr.Box():
                with gr.Column():
                    gr.Markdown("服务性能统计(每次提交请求会自动更新数据,您也可以手动点击更新)")
                    output_html_table = gr.HTML(
                        label="metrics",
                        interactive=False,
                        show_label=False,
                        value=metrics_table_head.format('', ''))
                    update_metric_button = gr.Button("更新统计数据")

            status_text = gr.Textbox(
                label="status",
                show_label=True,
                max_lines=1,
                interactive=False)

        all_input_output_components = input_accordions + input_name_texts + input_images + \
            input_texts + output_accordions + output_name_texts + output_images + output_texts

        def get_input_output_name(server_ip, server_port, model_name,
                                  model_version):
            try:
                server_addr = server_ip + ':' + server_port
                input_metas, output_metas = _http_manager.get_model_meta(
                    server_addr, model_name, model_version)
            except Exception as e:
                return {status_text: str(e)}
            results = {
                component: None
                for component in all_input_output_components
            }
            results[component_format_column] = gr.update(visible=True)
            # results[check_button] = gr.update(visible=False)
            for input_accordio in input_accordions:
                results[input_accordio] = gr.update(visible=False)
            for output_accordio in output_accordions:
                results[output_accordio] = gr.update(visible=False)
            results[status_text] = 'GetInputOutputName Successful'
            for i, input_meta in enumerate(input_metas):
                results[input_accordions[i]] = gr.update(visible=True)
                results[input_name_texts[i]] = input_meta['name']
            for i, output_meta in enumerate(output_metas):
                results[output_accordions[i]] = gr.update(visible=True)
                results[output_name_texts[i]] = output_meta['name']
            return results

        def component_inference(*args):
            server_ip = args[0]
            http_port = args[1]
            metric_port = args[2]
            model_name = args[3]
            model_version = args[4]
            names = args[5:5 + len(input_name_texts)]
            images = args[5 + len(input_name_texts):5 + len(input_name_texts) +
                          len(input_images)]
            texts = args[5 + len(input_name_texts) + len(input_images):5 +
                         len(input_name_texts) + len(input_images) +
                         len(input_texts)]
            task_type = args[-1]
            server_addr = server_ip + ':' + http_port
            if server_ip and http_port and model_name and model_version:
                inputs = {}
                for i, input_name in enumerate(names):
                    if input_name:
                        if images[i] is not None:
                            inputs[input_name] = np.array([images[i]])
                        if texts[i]:
                            inputs[input_name] = np.array(
                                [[texts[i].encode('utf-8')]], dtype=np.object_)
                try:
                    infer_results = _http_manager.infer(
                        server_addr, model_name, model_version, inputs)
                    results = {status_text: 'Inference Successful'}
                    for i, (output_name,
                            data) in enumerate(infer_results.items()):
                        results[output_name_texts[i]] = output_name
                        results[output_texts[i]] = str(data)
                        if task_type != 'unspecified':
                            try:
                                results[output_images[i]] = supported_tasks[
                                    task_type](images[0], data)
                            except Exception:
                                results[output_images[i]] = None
                    if metric_port:
                        html_table = get_metric_data(server_ip, metric_port)
                        results[output_html_table] = html_table
                    return results
                except Exception as e:
                    return {status_text: 'Error: {}'.format(e)}
            else:
                return {
                    status_text:
                    'Please input server addr, model name and model version.'
                }

        def raw_inference(*args):
            server_ip = args[0]
            http_port = args[1]
            metric_port = args[2]
            model_name = args[3]
            model_version = args[4]
            payload_text = args[5]
            server_addr = server_ip + ':' + http_port
            try:
                result = _http_manager.raw_infer(server_addr, model_name,
                                                 model_version, payload_text)
                results = {
                    status_text: 'Get response from server',
                    output_raw_text: result
                }
                if server_ip and metric_port:
                    html_table = get_metric_data(server_ip, metric_port)
                    results[output_html_table] = html_table
                return results
            except Exception as e:
                return {status_text: 'Error: {}'.format(e)}

        def update_metric(server_ip, metrics_port):
            if server_ip and metrics_port:
                try:
                    html_table = get_metric_data(server_ip, metrics_port)
                    return {
                        output_html_table: html_table,
                        status_text: "Successfully update metrics."
                    }
                except Exception as e:
                    return {status_text: 'Error: {}'.format(e)}
            else:
                return {
                    status_text: 'Please input server ip and metrics_port.'
                }

        check_button.click(
            fn=get_input_output_name,
            inputs=[
                server_addr_text, server_http_port_text, model_name_text,
                model_version_text
            ],
            outputs=[
                *all_input_output_components, check_button,
                component_format_column, status_text
            ])
        component_submit_button.click(
            fn=component_inference,
            inputs=[
                server_addr_text, server_http_port_text,
                server_metric_port_text, model_name_text, model_version_text,
                *input_name_texts, *input_images, *input_texts, task_radio
            ],
            outputs=[
                *output_name_texts, *output_images, *output_texts, status_text,
                output_html_table
            ])
        raw_submit_button.click(
            fn=raw_inference,
            inputs=[
                server_addr_text, server_http_port_text,
                server_metric_port_text, model_name_text, model_version_text,
                raw_payload_text
            ],
            outputs=[output_raw_text, status_text, output_html_table])
        update_metric_button.click(
            fn=update_metric,
            inputs=[server_addr_text, server_metric_port_text],
            outputs=[output_html_table, status_text])
    return block