UserGuide-en.md 33.7 KB
Newer Older
1
[**中文**](./README.md)
Y
YixinKristy 已提交
2 3 4 5 6 7 8

# VisualDL Guide

### Overview

VisualDL is a visualization tool designed for Deep Learning. VisualDL provides a variety of charts to show the trends of parameters. It enables users to understand the training process and model structures of Deep Learning models more clearly and intuitively so as to optimize models efficiently.

9
Currently, VisualDL provides seven components: scalar, image, audio, graph, histogram, pr curve, ROC curve and high dimensional. VisualDL iterates rapidly and new functions will be continuously added.
Y
YixinKristy 已提交
10 11 12



13

14
|                        Component Name                        |         Display Chart         | Function                                                     |
Y
YixinKristy 已提交
15
| :----------------------------------------------------------: | :---------------------------: | :----------------------------------------------------------- |
16 17 18 19 20
|                [ Scalar](#Scalar--Line-Chart)                |          Line Chart           | Display scalar data such as loss and accuracy dynamically.   |
|             [Image](#Image--Image-Visualization)             |      Image Visualization      | Display images, visualizing the input and the output and making it easy to view the changes in the intermediate process. |
|             [Audio](#Audio--Audio-Play)             |      Audio Play      | Play the audio during the training process, making it easy to monitor the process of speech recognition and text-to-speech. |
|              [Graph](#Graph--Network-Structure)              |       Network Structure       | Visualize network structures, node attributes and data flow, assisting developers to learn and to optimize network structures. |
|       [Histogram](#Histogram--Distribution-of-Tensors)       |    Distribution of Tensors    | Present the changes of distributions of tensors, such as weights/gradients/bias, during the training process. |
Y
YixinKristy 已提交
21
|                   [PR Curve](#PR-Curve)                   |   Precision & Recall Curve    | Display precision-recall curves across training steps, clarifying the tradeoff between precision and recall when comparing models. |
22
|                   [ROC Curve](#ROC-Curve)                   |   Receiver Operating Characteristic curve    | Shows the performance of a classification model at all classification thresholds |
23
| [High Dimensional](#High-Dimensional--Data-Dimensionality-Reduction) | Data Dimensionality Reduction | Project high-dimensional data into 2D/3D space for embedding visualization, making it convenient to observe the correlation between data. |
Y
YixinKristy 已提交
24

25
At the same time, VisualDL provides [VDL.service](#vdlservice) , which allows developers to easily save, track and share visualization results of experiments with anyone for free.
Y
YixinKristy 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

## Scalar--Line Chart

### Introduction

The data type of the input is scalar values. Scalar is used to present the training parameters in the form of a line chart. By using Scalar to record loss and accuracy, developers are able to track the trend of changes easily through line charts.

### Record Interface

The interface of the Scalar is shown as follows:

```python
add_scalar(tag, value, step, walltime=None)
```
The interface parameters are described as follows:
| parameter | format | meaning                                                      |
| --------- | ------ | ------------------------------------------------------------ |
| tag       | string | Record the name of the scalar data,e.g.train/loss. Notice that the name cannot contain `%` |
| value     | float  | Record the data                                              |
| step      | int    | Record the training steps                                    |
| walltime  | int    | Record the time-stamp of the data, the default is the current time-stamp |

*Note that the rules of specifying tags (e.g.train/acc) are:

1. The tag before the first  `/` is the parent tag and serves as the tag of the same raw
2. The tag after the first `/` is a child tag, the charts with child tag will be displayed under the parent tag
3. Users can use multiple `/`, but the tag of a raw is the parent tag--the tag before the first `/`

Here are three examples:

- When 'train' is created as the parent tag and 'acc' and 'loss' are created as child tags:`train/acc``train/loss`,the tag of a raw is 'train' , which includes two sub charts--'acc' and 'loss':

<p align="center">
Y
YixinKristy 已提交
59
  <img src="https://user-images.githubusercontent.com/48054808/90884030-88c54d80-e3e1-11ea-9ba7-4b8df7b3496e.png" width="100%"/>
Y
YixinKristy 已提交
60 61 62 63 64
</p>

- When 'train' is created as the parent tag, and 'test/acc' and 'test/loss' are created as child tags:`train/test/acc``train/test/loss`, the tag of a raw is 'train', which includes two sub charts--'test/acc' and 'test/loss': 

<p align="center">
Y
YixinKristy 已提交
65
  <img src="https://user-images.githubusercontent.com/48054808/90884098-a692b280-e3e1-11ea-8c0b-380b970b50b2.png" width="100%"/>
Y
YixinKristy 已提交
66 67 68 69 70
</p>

- When two parent tags are created:`acc``loss`, two rows of charts are named as 'acc' and 'loss' respectively.

<p align="center">
Y
YixinKristy 已提交
71
  <img src="https://user-images.githubusercontent.com/48054808/90884122-b3afa180-e3e1-11ea-90b0-93a75543f253.png" width="100%"/>
Y
YixinKristy 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
</p>

### Demo

- Fundamental Methods

The following shows an example of using Scalar to record data, and the script can be found in [Scalar Demo](../../demo/components/scalar_test.py)
```python
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # initialize a recorder
    with LogWriter(logdir="./log/scalar_test/train") as writer:
        for step in range(1000):
            # add accuracy with tag of 'acc' to the recorder
            writer.add_scalar(tag="acc", step=step, value=value[step])
            # add loss with tag of 'loss' to the recorder
            writer.add_scalar(tag="loss", step=step, value=1/(value[step] + 1))
```
After running the above program, developers can launch the panel by:
```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address: `http://127.0.0.1:8080`to view line charts:

<p align="center">
Y
YixinKristy 已提交
100
  <img src="https://user-images.githubusercontent.com/48054808/90871520-c9b36700-e3cd-11ea-9063-ca692b1d3917.png" width="100%"/>
Y
YixinKristy 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
</p>

- Advanced Usage--Comparison of Multiple Experiments

The following shows the comparison of multiple sets of experiments using Scalar.

There are two steps to achieve this function:

1. Create sub-log files to store the parameter data of each group of experiments
2. When recording data to the scalar component,developers can compare **the same type of parameters for different experiments**  by **using the same tag**

```python
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # Step 1: Create a parent folder: log and a child folder: scalar_test
    with LogWriter(logdir="./log/scalar_test") as writer:
        for step in range(1000):
            # Step 2: Add data with tag train/acc to the recorder
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
            # Step 2: Add data with tag train/loss to the recorder
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
    # Step 1: Create a second child folder: scalar_test2    
    value = [i/500.0 for i in range(1000)]
    with LogWriter(logdir="./log/scalar_test2") as writer:
        for step in range(1000):
            # Step 2: Add the accuracy data of scalar_test2 under the same name `train/acc`
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
            # Step 2: Add the loss data of scalar_test2 under the same name as `train/loss`
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
```

After running the above program, developers can launch the panel by:

```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address: `http://127.0.0.1:8080` to view line charts:

<p align="center">
Y
YixinKristy 已提交
143
  <img src="https://user-images.githubusercontent.com/48054808/90884963-4dc41980-e3e3-11ea-824a-277a8d71823e.png" width="100%"/>
Y
YixinKristy 已提交
144 145 146 147 148 149 150 151
</p>
*For more specific details of how to compare multiple experiments, pleas refer to the project on AI Studio:[VisualDL 2.0--Visualization of eye disease recognition training](https://aistudio.baidu.com/aistudio/projectdetail/502834)

### Functional Instruction

* Developers are allowed to zoom in, restore, transform of the coordinate axis (y-axis logarithmic coordinates), download the line chart.

<p align="center">
Y
YixinKristy 已提交
152
  <img src="https://visualdl.bj.bcebos.com/images/scalar-icon.png" width="45%"/>
Y
YixinKristy 已提交
153 154 155 156 157 158 159
</p>



* Details can be shown by hovering on specific data points.

<p align="center">
Y
YixinKristy 已提交
160
  <img src="https://user-images.githubusercontent.com/48054808/90872099-b785f880-e3ce-11ea-9ebe-8083c893d88b.png" width="60%"/>
Y
YixinKristy 已提交
161 162 163 164
</p>



165
* Developers can find target scalar charts by searching corresponded tags.
Y
YixinKristy 已提交
166 167

<p align="center">
Y
YixinKristy 已提交
168
  <img src="https://user-images.githubusercontent.com/48054808/90872849-cfaa4780-e3cf-11ea-985d-b4c382acf773.png" width="90%"/>
Y
YixinKristy 已提交
169 170 171 172 173 174 175
</p>



* Specific runs can be selected by searching for the corresponded  experiment tags.

<p align="center">
Y
YixinKristy 已提交
176
  <img src="https://user-images.githubusercontent.com/48054808/90873112-2b74d080-e3d0-11ea-8a69-24b7b4abae96.png" width="40%"/>
Y
YixinKristy 已提交
177 178
</p>

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
* Display the global extrema

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/93732753-46bc4100-fc05-11ea-92ca-35c89467815b.png" width="30%"/>
</p>

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/93732766-58054d80-fc05-11ea-89e0-bc00a283f559.png" width="60%"/>
</p>

* Only display smoothed data 

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/93732799-7f5c1a80-fc05-11ea-886f-193c3bcc9b5f.png" width="30%"/>
</p>

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/93732815-9569db00-fc05-11ea-8353-ffa5086d3d52.png" width="60%"/>
</p>
Y
YixinKristy 已提交
198 199 200 201 202 203 204 205

* There are three measurement scales of X axis

1. Step: number of iterations
2. Walltime: absolute training time
3. Relative: training time

<p align="center">
Y
YixinKristy 已提交
206
  <img src="https://user-images.githubusercontent.com/48054808/90873502-da191100-e3d0-11ea-8b03-c8fea0b65388.png" width="40%"/>
Y
YixinKristy 已提交
207
</p>
208

Y
YixinKristy 已提交
209 210 211
* The smoothness of the curve can be adjusted to better show the change of the overall trend.

<p align="center">
Y
YixinKristy 已提交
212
  <img src="https://user-images.githubusercontent.com/48054808/90873564-edc47780-e3d0-11ea-909c-161e9fd8eeef.png" width="37%"/>
Y
YixinKristy 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226
</p>


## Image--Image Visualization

### Introduction

The Image is used to present the change of image data during training. Developers can view images in different training stages by adding few lines of codes to record images in a log file.

### Record Interface

The interface of the Image is shown as follows:

```python
227
add_image(tag, img, step, walltime=None, dataformats="HWC")
Y
YixinKristy 已提交
228 229 230 231 232 233 234 235
```
The interface parameters are described as follows:
| parameter | format        | meaning                                                      |
| --------- | ------------- | ------------------------------------------------------------ |
| tag       | string        | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| img       | numpy.ndarray | Images in ndarray format                                     |
| step      | int           | Record the training steps                                    |
| walltime  | int           | Record the time-stamp of the data, the default is the current time-stamp |
236
| dataformats| string       | Format of image,include `NCHW``HWC``HW`,default is `HWC`|
Y
YixinKristy 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

### Demo
The following shows an example of using Image to record data, and the script can be found in [Image Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/image_test.py).
```python
import numpy as np
from PIL import Image
from visualdl import LogWriter


def random_crop(img):
    """get random 100x100 slices of image
    """
    img = Image.open(img)
    w, h = img.size
    random_w = np.random.randint(0, w - 100)
    random_h = np.random.randint(0, h - 100)
    r = img.crop((random_w, random_h, random_w + 100, random_h + 100))
    return np.asarray(r)


if __name__ == '__main__':
    # initialize a recorder
    with LogWriter(logdir="./log/image_test/train") as writer:
        for step in range(6):
            # add image data
            writer.add_image(tag="eye",
                             img=random_crop("../../docs/images/eye.jpg"),
                             step=step)
```
After running the above program, developers can launch the panel by:
```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address: `http://127.0.0.1:8080`to view:

<p align="center">
Y
YixinKristy 已提交
274
  <img src="https://user-images.githubusercontent.com/48054808/90874434-4a746200-e3d2-11ea-9395-a039d9e83470.png" width="90%"/>
Y
YixinKristy 已提交
275 276 277 278 279 280 281 282
</p>


### Functional Instructions

- Developers can find target images by searching corresponded tags.

<p align="center">
Y
YixinKristy 已提交
283
  <img src="https://user-images.githubusercontent.com/48054808/90875589-f8344080-e3d3-11ea-9020-52a5a88324ab.png" width="90%"/>
Y
YixinKristy 已提交
284 285 286 287 288 289
</p>


- Developers are allowed to view image data under different iterations by scrolling the Step/iteration slider.

<p align="center">
Y
YixinKristy 已提交
290
  <img src="https://user-images.githubusercontent.com/48054808/90875652-10a45b00-e3d4-11ea-9fd9-3c79f22829f7.gif" width="60%"/>
Y
YixinKristy 已提交
291 292
</p>

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
## Audio--Audio Play

### Introduction

Audio aims to allow developers to listen to the audio in real-time during the training process, helping developers to monitor the process of speech recognition and text-to-speech.

### Record Interface

The interface of the Image is shown as follows:

```python
add_audio(tag, audio_array, step, sample_rate)
```
The interface parameters are described as follows:
| parameter | format        | meaning                                                      |
| --------- | ------------- | ------------------------------------------------------------ |
| tag      | string        | Record the name of the audio,e.g.audoi/sample. Notice that the name cannot contain `%` |
| audio_arry      | numpy.ndarray | Audio in ndarray format                     |
| step     | int           | Record the training steps                                  |
| sample_rate | int           | Sample rate,**Please note that the rate should be the rate of the original audio**          |

### Demo
The following shows an example of using Audio to record data, and the script can be found in [Audio Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/audio_test.py).

```python
from visualdl import LogWriter
Y
YixinKristy 已提交
319
from scipy.io import wavfile
320 321 322


if __name__ == '__main__':
Y
YixinKristy 已提交
323 324
    with LogWriter(logdir="./log/audio_test/train") as writer:
        sample_rate, audio_data = wavfile.read('./test.wav')
325 326 327
        writer.add_audio(tag="audio_tag",
                         audio_array=audio_data,
                         step=0,
Y
YixinKristy 已提交
328
                         sample_rate=sample_rate)
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
```
After running the above program, developers can launch the panel by:
```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address: `http://127.0.0.1:8080`to view:

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/88753858-eaeab400-d18f-11ea-87c6-46ab7d5a5fd0.png" width="90%"/>
</p>

### Functional Instructions

- Developers can find the target audio by searching corresponded tags.

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/88755034-c6dca200-d192-11ea-8349-1414bcf9d38d.png" width="80%"/>
</p>

- Developers are allowed to listen to the audio under different iterations by scrolling the Step/iteration slider.

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/88755220-33f03780-d193-11ea-9b0f-a283d9f3a78a.png" width="40%"/>
</p>

- Play/Pause the audio

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/88755240-41a5bd00-d193-11ea-9780-7ae7c7792070.png" width="40%"/>
</p>

- Adjust the volume

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/88755258-53876000-d193-11ea-96b2-9ed698423202.png" width="40%"/>
</p>

- Download the audio

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/88755377-9a755580-d193-11ea-947e-4275b9d3aa54.png" width="40%"/>
</p>


Y
YixinKristy 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
## Graph--Network Structure

### Introduction

Graph can visualize the network structure of the model by one click. It enables developers to view the model attributes, node information, searching node and so on. These functions help developers analyze model structures and understand the directions of data flow quickly.

### Demo
There are two methods to launch this component:

- By the front end:

  - If developers only need to use Graph, developers can launch VisualDL (Graph) by executing `visualdl`on the command line.
  - If developers need to use Graph and other functions at the same time, they need to specify the log file path (using `./log` as an example):

  ```shell
  visualdl --logdir ./log --port 8080
  ```


- By the backend:

  - Add the parameter `--model` and specify the **model file** path (not the folder path) to launch the panel:

  ```shell
  visualdl --model ./log/model --port 8080
  ```


After the launch, developers can view the network structure:

<p align="center">
Y
YixinKristy 已提交
405
  <img src="https://user-images.githubusercontent.com/48054808/90877274-6548d580-e3d6-11ea-9804-74a1ead47b30.png" width="80%"/>
Y
YixinKristy 已提交
406 407 408 409 410 411 412 413 414
</p>

### Functional Instructions

- Upload the model file by one-click
  - Supported model:PaddlePaddle、ONNX、Keras、Core ML、Caffe、Caffe2、Darknet、MXNet、ncnn、TensorFlow Lite
  - Experimental supported model:TorchScript、PyTorch、Torch、 ArmNN、BigDL、Chainer、CNTK、Deeplearning4j、MediaPipe、ML.NET、MNN、OpenVINO、Scikit-learn、Tengine、TensorFlow.js、TensorFlow

<p align="center">
Y
YixinKristy 已提交
415
  <img src="https://user-images.githubusercontent.com/48054808/90877449-a80aad80-e3d6-11ea-8016-0a2f3afe6f5e.png" width="80%"/>
Y
YixinKristy 已提交
416 417 418 419 420
</p>

- Developers are allowed to drag the model up and down,left and right,zoom in and zoom out.

<p align="center">
Y
YixinKristy 已提交
421
  <img src="https://user-images.githubusercontent.com/48054808/90878058-a097d400-e3d7-11ea-9543-bcef67ace675.gif" width="80%"/>
Y
YixinKristy 已提交
422 423 424 425 426
</p>

- Search to locate the specific node

<p align="center">
Y
YixinKristy 已提交
427
  <img src="https://user-images.githubusercontent.com/48054808/90878136-c0c79300-e3d7-11ea-9a14-1c1e809af442.png" width="30%"/>
Y
YixinKristy 已提交
428 429 430 431 432
</p>

- Click to view the model properties

<p align="center">
Y
YixinKristy 已提交
433
  <img src="https://user-images.githubusercontent.com/48054808/90878623-5531f580-e3d8-11ea-89cc-1be3500bff66.png" width="30%"/>
Y
YixinKristy 已提交
434 435 436 437 438
</p>

- Display the model information by selecting corresponded attributes

<p align="center">
Y
YixinKristy 已提交
439
  <img src="https://user-images.githubusercontent.com/48054808/90878712-6ed33d00-e3d8-11ea-85b9-48bf57867d30.png" width="23%"/>
Y
YixinKristy 已提交
440 441 442 443 444
</p>

- Files can be ex as PNG or SVG format

<p align="center">
Y
YixinKristy 已提交
445
  <img src="https://user-images.githubusercontent.com/48054808/90878893-b35ed880-e3d8-11ea-8c22-badee805bfff.png" width="30%"/>
Y
YixinKristy 已提交
446 447 448 449 450
</p>

- Click nodes to view attribute information

<p align="center">
Y
YixinKristy 已提交
451
  <img src="https://user-images.githubusercontent.com/48054808/90878944-c5407b80-e3d8-11ea-9db2-10e1dd1de5bf.png" width="30%"/>
Y
YixinKristy 已提交
452 453 454 455 456
</p>

- Switch the model by one-click

<p align="center">
Y
YixinKristy 已提交
457
  <img src="https://user-images.githubusercontent.com/48054808/90879247-34b66b00-e3d9-11ea-94ef-a26b1ba07dd0.png" width="25%"/>
Y
YixinKristy 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
</p>

## Histogram--Distribution of Tensors 

### Introduction

Histogram displays how the trend of tensors (weight, bias, gradient, etc.) changes during the training process in the form of histogram. Developers can adjust the model structures accurately by having an in-depth understanding of the effect of each layer.

### Record Interface

The interface of the Histogram is shown as follows: 

```python
add_histogram(tag, values, step, walltime=None, buckets=10)
```

The interface parameters are described as follows:

| parameter | format                | meaning                                                      |
| --------- | --------------------- | ------------------------------------------------------------ |
| tag       | string                | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| values    | numpy.ndarray or list | Data is in ndarray or list format                            |
| step      | int                   | Record the training steps                                    |
| walltime  | int                   | Record the time-stamp of the data, and the default is the current time-stamp |
| buckets   | int                   | The number of segments to generate the histogram and the default value is 10 |

### Demo

The following shows an example of using  Histogram to record data, and the script can be found in [Histogram Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/histogram_test.py)

```python
from visualdl import LogWriter
import numpy as np


if __name__ == '__main__':
    values = np.arange(0, 1000)
    with LogWriter(logdir="./log/histogram_test/train") as writer:
        for index in range(1, 101):
            interval_start = 1 + 2 * index / 100.0
            interval_end = 6 - 2 * index / 100.0
            data = np.random.uniform(interval_start, interval_end, size=(10000))
            writer.add_histogram(tag='default tag',
                                 values=data,
                                 step=index,
                                 buckets=10)
```

After running the above program, developers can launch the panel by:

```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address: `http://127.0.0.1:8080`to view the histogram.

### Functional Instructions

- Developers are allowed to zoom in and download the histogram.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86535351-42d82700-bf12-11ea-89f0-171280e7c526.png" width="60%"/>
  </p>

- Provide two modes: Offset and Overlay.

  <p align="center">
Y
YixinKristy 已提交
525
    <img src="https://user-images.githubusercontent.com/48054808/90879332-56175700-e3d9-11ea-87c3-24682191ddd4.png" width="30%"/>
Y
YixinKristy 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
  </p>


  - Offset mode

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536435-2b9d3780-bf1a-11ea-9981-92f837d22ae5.png" width="60%"/>
  </p>


  - Overlay mode

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536458-5ab3a900-bf1a-11ea-985e-05f06c1b762b.png" width="60%"/>
  </p>

- Display the parameters、training steps and frequency by hovering on specific data points.

  - In the 240th training step, the weight is -0.0031and the frequency is 2734

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536482-80d94900-bf1a-11ea-9e12-5bea9f382b34.png" width="60%"/>
  </p>

- Developers can find target histogram by searching corresponded tags.

  <p align="center">
Y
YixinKristy 已提交
553
    <img src="https://user-images.githubusercontent.com/48054808/90879724-ebb2e680-e3d9-11ea-9e05-9bc06691ed9c.png" width="85%"/>
Y
YixinKristy 已提交
554 555 556 557 558
  </p>

- Search tags to show the histograms generated by corresponded experiments.

  <p align="center">
Y
YixinKristy 已提交
559
    <img src="https://user-images.githubusercontent.com/48054808/90879868-26b51a00-e3da-11ea-8c1d-83fb019ec668.png" width="40%"/>
Y
YixinKristy 已提交
560 561
  </p>

Y
YixinKristy 已提交
562
## PR Curve
Y
YixinKristy 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

### Introduction

PR Curve presents precision-recall curves in line charts, describing the tradeoff relationship between precision and recall in order to choose a best threshold.

### Record Interface

The interface of the PR Curve is shown as follows:

```python
add_pr_curve(tag, labels, predictions, step=None, num_thresholds=10)
```

The interface parameters are described as follows:

Y
YixinKristy 已提交
578
| parameter          | format                  | meaning                                        |
Y
YixinKristy 已提交
579
| -------------- | --------------------- | ------------------------------------------- |
Y
YixinKristy 已提交
580 581 582 583 584 585 586
| tag            | string                | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| values         | numpy.ndarray or list | Data is in ndarray or list format            |
| predictions    | numpy.ndarray or list | Prediction data is in ndarray or list format            |
| step           | int                   | Record the training steps                                  |
| num_thresholds | int                   | Set the number of thresholds, default as 10, maximum as 127      |
| weights        | float                   | Set the weights of TN/FN/TP/FP to calculate precision and recall      |
| walltime       | int                   | Record the time-stamp of the data, and the default is the current time-stamp      |
Y
YixinKristy 已提交
587 588 589

### Demo

590
The following shows an example of how to use PR Curve component, and script can be found in [PR Curve Demo](../../demo/components/pr_curve_test.py)
Y
YixinKristy 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

```python
from visualdl import LogWriter
import numpy as np

with LogWriter("./log/pr_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_pr_curve(tag='pr_curve',
                            labels=labels,
                            predictions=predictions,
                            step=step,
                            num_thresholds=5)
```

After running the above program, developers can launch the panel by:

```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address`http://127.0.0.1:8080` to view:

<p align="center">
Y
YixinKristy 已提交
616
  <img src="https://user-images.githubusercontent.com/48054808/90879904-37fe2680-e3da-11ea-9369-2513620bf541.png" width="85%"/>
Y
YixinKristy 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629
</p>

### Functional Instrucions

- Developers can zoom in, restore, and download PR Curves

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86740067-f18e7b80-c068-11ea-96bf-52cb7da1f799.png" width="40%"/>
  </p>

- Developers hover on the specific data point to learn about the detailed information: TP, TN, FP, FN and the corresponded thresholds

    <p align="center">
Y
YixinKristy 已提交
630
      <img src="https://user-images.githubusercontent.com/48054808/90879971-4e0be700-e3da-11ea-989a-777b977c271d.png" width="50%"/>
Y
YixinKristy 已提交
631 632 633 634 635
    </p>

- The targeted PR Curves can be displayed by searching tags

  <p align="center">
Y
YixinKristy 已提交
636
    <img src="https://user-images.githubusercontent.com/48054808/90880145-8e6b6500-e3da-11ea-8f06-28248ee2eb84.png" width="80%"/>
Y
YixinKristy 已提交
637 638 639 640 641
  </p>

- Developers can find specific labels by searching tags or view the all labels

<p align="center">
Y
YixinKristy 已提交
642
  <img src="https://user-images.githubusercontent.com/48054808/90880173-9fb47180-e3da-11ea-8704-34cc55c0a844.png" width="30%"/>
Y
YixinKristy 已提交
643 644 645 646 647
</p>

- Developers is able to observe the changes of PR Curves across training steps

  <p align="center">
Y
YixinKristy 已提交
648
    <img src="https://user-images.githubusercontent.com/48054808/90880301-d2f70080-e3da-11ea-97e0-952b389f8010.png" width="30%"/>
Y
YixinKristy 已提交
649 650 651 652 653 654 655 656 657
  </p>

- There are three measurement scales of X axis

  1. Step: number of iterations
  2. Walltime: absolute training time
  3. Relative: training time

  <p align="center">
Y
YixinKristy 已提交
658
    <img src="https://user-images.githubusercontent.com/48054808/90880354-eace8480-e3da-11ea-921f-20f363eb1b1d.png" width="30%"/>
Y
YixinKristy 已提交
659 660
  </p>

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
## ROC Curve

### Introduction

ROC Curve shows the performance of a classification model at all classification thresholds; the larger the area under the curve, the better the model performs, aiding developers to evaluate the model performance and choose an appropriate threshold.

### Record Interface

The interface of the PR Curve is shown as follows:

```python
add_roc_curve(tag, labels, predictions, step=None, num_thresholds=10)
```

The interface parameters are described as follows:

| parameter          | format                  | meaning                                        |
| -------------- | --------------------- | ------------------------------------------- |
| tag            | string                | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| values         | numpy.ndarray or list | Data is in ndarray or list format            |
| predictions    | numpy.ndarray or list | Prediction data is in ndarray or list format            |
| step           | int                   | Record the training steps                                  |
| num_thresholds | int                   | Set the number of thresholds, default as 10, maximum as 127      |
| weights        | float                   | Set the weights of TN/FN/TP/FP to calculate precision and recall      |
| walltime       | int                   | Record the time-stamp of the data, and the default is the current time-stamp      |

### Demo

The following shows an example of how to use ROC curve component, and script can be found in [ROC Curve Demo](../../demo/components/roc_curve_test.py)

```python
from visualdl import LogWriter
import numpy as np

with LogWriter("./log/roc_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_roc_curve(tag='roc_curve',
                             labels=labels,
                             predictions=predictions,
                             step=step,
                             num_thresholds=5)

```

After running the above program, developers can launch the panel by:

```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address`http://127.0.0.1:8080` to view:

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/103274711-42ba6f00-49fd-11eb-9452-4dd492682dd8.png" width="85%"/>
</p>

*Note: the use of ROC Curve in the frontend is the same as that of PR Curve, please refer to the instructions in PR Curve section if needed.

Y
YixinKristy 已提交
721 722 723 724 725 726 727 728
## High Dimensional--Data Dimensionality Reduction

### Introduction

High Dimensional projects high-dimensional data into a low dimensional space, aiding users to have an in-depth analysis of the relationship between high-dimensional data. Two dimensionality reduction algorithms are supported:

 - PCA : Principle Component Analysis 
 - t-SNE : t-distributed Stochastic Neighbor Embedding 
729
 - umap: Uniform Manifold Approximation and Projection
Y
YixinKristy 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

### Record Interface

The interface of the High Dimensional is shown as follows:

```python
add_embeddings(tag, labels, hot_vectors, walltime=None)
```
The interface parameters are described as follows:
| parameter   | format              | meaning                                                      |
| ----------- | ------------------- | ------------------------------------------------------------ |
| tag         | string              | Record the name of the high dimensional data, e.g.`default`. Notice that the name cannot contain `%` |
| labels      | numpy.array or list | Labels are represented by one-dimensional array. Each element is string type. |
| hot_vectors | numpy.array or list | Each element can be seen as a feature of the tag corresponding to the label. |
| walltime    | int                 | Record the time stamp of the data, the default is the current time stamp. |

### Demo
The following shows an example of how to use High Dimensional component, and script can be found in [High Dimensional Demo](../../demo/components/high_dimensional_test.py)
```python
from visualdl import LogWriter


if __name__ == '__main__':
    hot_vectors = [
        [1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
        [1.1039614644440658, 1.8891609992484688, 1.32030488587171],
        [1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
        [1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
        [1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]

    labels = ["label_1", "label_2", "label_3", "label_4", "label_5"]
    # initialize a recorder
    with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
        # recorde a set of labels and corresponding hot_vectors to the recorder 
        writer.add_embeddings(tag='default',
                              labels=labels,
                              hot_vectors=hot_vectors)
```
After running the above program, developers can launch the panel by:
```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address`http://127.0.0.1:8080` to view:

<p align="center">
776
  <img src="https://user-images.githubusercontent.com/48054808/103188111-1b32ac00-4902-11eb-914e-c2368bdb8373.gif" width="85%"/>
Y
YixinKristy 已提交
777 778 779 780
</p>

### Functional Instrucions

781
* Developers are allowed to select specific runs of data or certain labels of data to display
Y
YixinKristy 已提交
782 783

  <p align="center">
784
    <img src="https://user-images.githubusercontent.com/48054808/103191809-4e306c00-4911-11eb-853f-e143ef86e182.png" width="30%"/>
Y
YixinKristy 已提交
785 786
  </p>

787
* TSNE
Y
YixinKristy 已提交
788 789

  <p align="center">
790
    <img src="https://user-images.githubusercontent.com/48054808/103192762-cea49c00-4914-11eb-896c-070b0bf0e2ea.png" width="27%"/>
Y
YixinKristy 已提交
791 792
  </p>

793
* PCA
Y
YixinKristy 已提交
794 795

  <p align="center">
796
    <img src="https://user-images.githubusercontent.com/48054808/103192341-47a2f400-4913-11eb-9995-fdc0acadbdc9.png" width="27%"/>
Y
YixinKristy 已提交
797 798
  </p>

799
* UMAP
Y
YixinKristy 已提交
800 801

  <p align="center">
802
    <img src="https://user-images.githubusercontent.com/48054808/103192766-d2d0b980-4914-11eb-871e-e4b31542c5e9.png" width="27%"/>
803
  </p>
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836


## VDL.service

### Introduction

VDL.service enables developers to easily save, track and share visualization results with anyone for free.

### Usage Steps

1. Make sure that your get the lastest version of VisualDL, if not, please update by:

```
pip install visualdl --upgrade

```

2. Upload log/model to save, track and share the visualization results.

```
visualdl service upload --logdir ./log \
                        --model ./__model__
```                       
                       
3. An unique URL will be given. Then you can view the visualization results by simply copying and pasting the URL to the browser. 

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/93733769-5ccc0080-fc09-11ea-88c0-6f17c04ebdce.png" width="100%"/>
  </p>
  
   <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/93734496-057b5f80-fc0c-11ea-9b52-229ff8847bc0.png" width="100%"/>
  </p>