Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Serving
  • 合并请求
  • !521

S
Serving
  • 项目概览

PaddlePaddle / Serving
大约 2 年 前同步成功

通知 187
Star 833
Fork 253
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 105
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 10
  • Wiki 2
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
S
Serving
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 105
    • Issue 105
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 10
    • 合并请求 10
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 2
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板

add pytorch style image preprocessing class and functions !521

  • Report abuse
!521 已合并 5月 01, 2020 由 saxon_zh@saxon_zh 创建
#<User:0x00007fed5e37fae8>
  • 概览 0
  • 提交 10
  • 变更 20

Created by: guru4elephant

To make image processing easy, I propose to use torchvision style API for user to do image preprocessing. Example code is as follows:

from paddle_serving_app.reader import File2Image, Sequential, Normalize, CenterCrop, Resize

seq = Sequential([
    File2Image(), CenterCrop(30),
    Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Resize((5, 5))
])

url = "daisy.jpg"
for x in range(100):
    img = seq(url)
    print(img.shape)

Resnet50 preprocessing for inference can be as follows:

import sys
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize
import time

client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9393"])

seq = Sequential([
    File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
    Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
print(seq)

start = time.time()
image_file = "daisy.jpg"
for i in range(1000):
    img = seq(image_file)
    fetch_map = client.predict(feed={"image": img}, fetch=["score"])
end = time.time()
print(end - start)

Image Detection with Faster RCNN example code is as follows:

from paddle_serving_client import Client
import sys
from paddle_serving_app.reader import File2Image, Sequential, Normalize, Resize, Transpose, Div, BGR2RGB, RCNNPostprocess
import numpy as np

preprocess = Sequential([
    File2Image(), BGR2RGB(), Div(255.0),
    Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False),
    Resize(640, 640), Transpose((2, 0, 1))
])

postprocess = RCNNPostprocess("label_list.txt", "output")

client = Client()
client.load_client_config(sys.argv[1])
client.connect(['127.0.0.1:9393'])

for i in range(100):
    im = preprocess(sys.argv[2])
    fetch_map = client.predict(
        feed={
            "image": im,
            "im_info": np.array(list(im.shape[1:]) + [1.0]),
            "im_shape": np.array(list(im.shape[1:]) + [1.0])
        },
        fetch=["multiclass_nms"])
    fetch_map["image"] = sys.argv[2]
    postprocess(fetch_map)

Image Segmentation Example

from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, Resize, Transpose, BGR2RGB, SegPostprocess
import sys
import cv2

client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9494"])

preprocess = Sequential(
    [File2Image(), Resize(
        (512, 512), interpolation=cv2.INTER_LINEAR)])

postprocess = SegPostprocess(2)

for i in range(100):
    filename = sys.argv[2]
    im = preprocess(filename)
    fetch_map = client.predict(feed={"image": im}, fetch=["output"])
    fetch_map["filename"] = filename
    postprocess(fetch_map)
指派人
分配到
审核者
Request review from
无
里程碑
无
分配里程碑
工时统计
标识: paddlepaddle/Serving!521
Source branch: github/fork/guru4elephant/refine_serving_app
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7