提交 fe4b3ac8 编写于 作者: S ShiningZhang

update SERVING_CONFIGURE.md&CN

上级 73b6ca42
......@@ -4,11 +4,11 @@
## Overview
This guide focuses on Paddle C++ Server and Python Server configuration:
This guide focuses on Paddle C++ Serving and Python Pipeline configuration:
- [Model Configuration](#model-configuration): Auto generated when converting model. Specify model input/output.
- [C++ Server](#c-server): High-performance scenarios. Specify how to start quickly and start with user-defined configuration.
- [Python Server](#python-server): Multiple model combined scenarios.
- [C++ Serving](#c-serving): High-performance scenarios. Specify how to start quickly and start with user-defined configuration.
- [Python Pipeline](#python-pipeline): Multiple model combined scenarios.
## Model Configuration
......@@ -56,13 +56,13 @@ fetch_var {
- shape:tensor shape
## C++ Server
## C++ Serving
### 1. Quick start
The easiest way to start c++ server is to provide the `--model` and `--port` flags.
The easiest way to start c++ serving is to provide the `--model` and `--port` flags.
Example starting c++ server:
Example starting c++ serving:
```BASH
python3 -m paddle_serving_server.serve --model serving_model --port 9393
```
......@@ -314,9 +314,9 @@ fetch_var {
}
```
## Python Server
## Python Pipeline
Python Server provides a user-friendly programming framework for multi-model composite services.
Python Pipeline provides a user-friendly programming framework for multi-model composite services.
Example of config.yaml:
```YAML
......@@ -441,7 +441,7 @@ devices: "" # "0,1"
### Low precision inference
Python Server supports low-precision inference. The precision types supported by CPU, GPU and TensoRT are shown in the figure below:
Python Pipeline supports low-precision inference. The precision types supported by CPU, GPU and TensoRT are shown in the figure below:
- CPU
- fp32(default)
- fp16
......
......@@ -4,11 +4,11 @@
## 简介
本文主要介绍C++ Server以及Python Server的各项配置:
本文主要介绍C++ Serving以及Python Pipeline的各项配置:
- [模型配置文件](#模型配置文件): 转换模型时自动生成,描述模型输入输出信息
- [C++ Server](#c-server): 用于高性能场景,介绍了快速启动以及自定义配置方法
- [Python Server](#python-server): 用于单算子多模型组合场景
- [C++ Serving](#c-serving): 用于高性能场景,介绍了快速启动以及自定义配置方法
- [Python Pipeline](#python-pipeline): 用于单算子多模型组合场景
## 模型配置文件
......@@ -56,7 +56,7 @@ fetch_var {
- shape:数据维度
## C++ Server
## C++ Serving
### 1.快速启动
......@@ -66,7 +66,7 @@ fetch_var {
python3 -m paddle_serving_server.serve --model serving_model --port 9393
```
该命令会自动生成配置文件,并使用生成的配置文件启动C++ Server。例如上述启动命令会自动生成workdir_9393目录,其结构如下
该命令会自动生成配置文件,并使用生成的配置文件启动C++ Serving。例如上述启动命令会自动生成workdir_9393目录,其结构如下
```
workdir_9393
......@@ -310,9 +310,9 @@ fetch_var {
}
```
## Python Server
## Python Pipeline
Python Server提供了用户友好的多模型组合服务编程框架,适用于多模型组合应用的场景。
Python Pipeline提供了用户友好的多模型组合服务编程框架,适用于多模型组合应用的场景。
其配置文件为YAML格式,一般默认为config.yaml。示例如下:
```YAML
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
......@@ -417,7 +417,7 @@ devices: "0,1,2"
### 异构硬件
Python Server除了支持CPU、GPU之外,还支持多种异构硬件部署。在config.yaml中由device_type和devices控制。优先使用device_type指定,当其空缺时根据devices自动判断类型。device_type描述如下:
Python Pipeline除了支持CPU、GPU之外,还支持多种异构硬件部署。在config.yaml中由device_type和devices控制。优先使用device_type指定,当其空缺时根据devices自动判断类型。device_type描述如下:
- CPU(Intel) : 0
- GPU : 1
- TensorRT : 2
......@@ -434,7 +434,7 @@ devices: "" # "0,1"
### 低精度推理
Python Serving支持低精度推理,CPU、GPU和TensoRT支持的精度类型如下所示:
Python Pipeline支持低精度推理,CPU、GPU和TensoRT支持的精度类型如下所示:
- CPU
- fp32(default)
- fp16
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册