未验证 提交 fcac1116 编写于 作者: W Wang Guibao 提交者: GitHub

Update DEPLOY.md

上级 12a1e664
......@@ -31,7 +31,7 @@
* [4.2 拷贝cube-transfer到物理机](#head27)
* [4.3 启动cube-transfer](#head28)
* [4.4 cube-transfer支持查询接口](#head281)
* [4.5 donefile格式协议](#head29)
* [4.5 donefile格式协议](#head29)
* [ 预测服务部署](#head30)
* [ 1、Server端](#head31)
* [1.1 Cube服务](#head32)
......@@ -62,7 +62,7 @@
3. 分布式训练产出sparse embedding,由于体积太大,通过cube稀疏参数服务提供给serving访问
4. 在线预测时,Serving通过访问cube集群获取embedding数据,与dense参数配合完成预测计算过程
以下从3部分分别介绍上图中各个组件:
以下从4部分分别介绍上图中各个组件:
1. 分布式训练集群和训练任务提交
2. 稀疏参数服务部署与使用
3. Paddle Serving的部署
......@@ -256,25 +256,27 @@ kubectl apply -f volcano-ctr-demo-baiduyun.yaml
### <span id="head12"> 5、模型产出</span>
CTR预估模型包含了embedding部分以及dense神经网络两部分,其中embedding部分包含的稀疏参数较多,在某些场景下单机的资源难以加载整个模型,因此需要将这两部分分割开来,稀疏参数部分放在分布式的稀疏参数服务器,dense网络部分加载到serving服务中
CTR预估模型包含了embedding部分以及dense神经网络两部分,其中embedding部分包含的稀疏参数较多,在某些场景下单机的资源难以加载整个模型,因此需要将这两部分分割开来,稀疏参数部分放在分布式的稀疏参数服务,dense网络部分加载到serving服务中。在本文中使用的CTR模型训练镜像中已经包含了模型裁剪和稀疏参数产出的脚本,以下简述其原理和工作过程
#### <span id="head13">5.1 模型裁剪</span>
#### <span id="head13">5.1 模型裁剪,产出预测ProgramDesc和dense参数</span>
产出用于paddle serving预测服务的dense模型需要对保存的原始模型进行裁剪操作,修改模型的输入以及内部结构。具体操作请参考文档[模型裁剪]([https://github.com/PaddlePaddle/Serving/blob/develop/doc/CTR_PREDICTION.md#2-%E6%A8%A1%E5%9E%8B%E8%A3%81%E5%89%AA](https://github.com/PaddlePaddle/Serving/blob/develop/doc/CTR_PREDICTION.md#2-模型裁剪))。
产出用于paddle serving预测服务的dense模型需要对保存的原始模型进行裁剪操作,修改模型的输入以及内部结构。具体原理和操作流程请参考文档[改造CTR预估模型用于大规模稀疏参数服务演示](https://github.com/PaddlePaddle/Serving/blob/develop/doc/CTR_PREDICTION.md)
#### <span id="head14">5.2 稀疏参数产出</span>
在trainer镜像中,模型裁剪的主要交互流程是:
分布式稀疏参数服务器由paddle serving的cube模块实现。cube服务器中加载的数据格式为seqfile格式,因此需要对paddle保存出的模型文件进行格式转换。
1. 监视训练脚本所在目录的models文件夹,当发现有子目录`pass-1000`时,表示训练任务完成 (默认训练轮次为1000)
2. 调用save_program.py,生成一个适用于预测的ProgramDesc保存到models/inference_only目录,并将所需参数一并保存到该子目录下
3. 调用replace_params.py,用models/pass-1000目录下参数文件替换models/inference_only目录下同名参数文件
4. 打包models/inference_only生成ctr_model.tar.gz,放到HTTP服务目录下,供外部用户手动下载,并替换到Serving的data/models/paddle/fluid/ctr_prediction目录中 (详见本文“预测服务部署”一节)
可以通过[格式转换脚本](http://icode.baidu.com/repos/baidu/personal-code/wangguibao/blob/master:ctr-embedding-to-sequencefile/dumper.py)
#### <span id="head14">5.2 稀疏参数产出</span>
使用方法:
分布式稀疏参数服务由paddle serving的Cube模块实现。Cube服务接受的原始数据格式为Hadoop seqfile格式,因此需要对paddle保存出的模型文件进行格式转换。
```bash
python dumper.py --model_path=xxx --output_data_path=xxx
```
在trainer镜像中,将模型参数转换为seqfile的主要流程是:
**注意事项:**文档中使用的CTR模型训练镜像中已经包含了模型裁剪以及稀疏参数产出的脚本,并且搭建了一个http服务用于从外部获取产出的dense模型以及稀疏参数文件。
1. 监视训练脚本所在目录的models文件夹,当发现有子目录`pass-1000`时,表示训练任务完成 (默认训练轮次为1000)
2. 调用dumper.py,将models/pass-1000/SparseFeatFactors文件转换成seqfile格式,同时生成一个用于让下游cube-transfer下载完整数据的donefile文件,整个目录结构放到HTTP服务目录下,供下游cube-transfer监听进程检测和下载 (详见本文“大规模稀疏参数服务Cube的部署和使用”一节)
## <span id="head15"> 大规模稀疏参数服务Cube的部署和使用</span>
......@@ -528,7 +530,7 @@ cube0_1: 10.10.180.40:8000:/home/disk1/cube_open //0号分片1号副
#### <span id="head27">4.2 拷贝cube-transfer到物理机</span>
将bin/cube-transfer和conf/transfer.conf拷贝到物理机上,构建output和tmp文件夹用来存放配送的中间文件。
将bin/cube-transfer和conf/transfer.conf拷贝到多个物理机上,构建output和tmp文件夹用来存放配送的中间文件。
假设拷贝好的文件结构如下:
```
$ tree
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册