Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
fb061bd6
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fb061bd6
编写于
4月 16, 2020
作者:
W
wangjiawei04
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'guru4elephant/variable_shape' into pddet
上级
823ecd89
1a034ea4
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
157 addition
and
285 deletion
+157
-285
core/general-client/include/general_model.h
core/general-client/include/general_model.h
+17
-16
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+46
-172
core/general-client/src/pybind_general_model.cpp
core/general-client/src/pybind_general_model.cpp
+14
-17
core/general-server/op/general_response_op.cpp
core/general-server/op/general_response_op.cpp
+36
-57
core/general-server/proto/general_model_service.proto
core/general-server/proto/general_model_service.proto
+1
-0
core/sdk-cpp/proto/general_model_service.proto
core/sdk-cpp/proto/general_model_service.proto
+1
-0
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+40
-22
python/requirements.txt
python/requirements.txt
+1
-0
python/setup.py.client.in
python/setup.py.client.in
+1
-1
未找到文件。
core/general-client/include/general_model.h
浏览文件 @
fb061bd6
...
@@ -45,13 +45,17 @@ class PredictorRes {
...
@@ -45,13 +45,17 @@ class PredictorRes {
~
PredictorRes
()
{}
~
PredictorRes
()
{}
public:
public:
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
get_int64_by_name
(
const
std
::
vector
<
int64_t
>&
get_int64_by_name
(
const
std
::
string
&
name
)
{
const
std
::
string
&
name
)
{
return
_int64_value_map
[
name
];
return
_int64_map
[
name
];
}
}
const
std
::
vector
<
std
::
vector
<
float
>>&
get_float_by_name
(
const
std
::
vector
<
float
>&
get_float_by_name
(
const
std
::
string
&
name
)
{
const
std
::
string
&
name
)
{
return
_float_value_map
[
name
];
return
_float_map
[
name
];
}
const
std
::
vector
<
int
>&
get_shape
(
const
std
::
string
&
name
)
{
return
_shape_map
[
name
];
}
const
std
::
vector
<
int
>&
get_lod
(
const
std
::
string
&
name
)
{
return
_lod_map
[
name
];
}
}
void
set_variant_tag
(
const
std
::
string
&
variant_tag
)
{
void
set_variant_tag
(
const
std
::
string
&
variant_tag
)
{
_variant_tag
=
variant_tag
;
_variant_tag
=
variant_tag
;
...
@@ -59,8 +63,10 @@ class PredictorRes {
...
@@ -59,8 +63,10 @@ class PredictorRes {
const
std
::
string
&
variant_tag
()
{
return
_variant_tag
;
}
const
std
::
string
&
variant_tag
()
{
return
_variant_tag
;
}
public:
public:
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
int64_t
>>>
_int64_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>
_int64_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
float
>>>
_float_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>
_float_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_shape_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_lod_map
;
private:
private:
std
::
string
_variant_tag
;
std
::
string
_variant_tag
;
...
@@ -81,21 +87,16 @@ class PredictorClient {
...
@@ -81,21 +87,16 @@ class PredictorClient {
int
create_predictor_by_desc
(
const
std
::
string
&
sdk_desc
);
int
create_predictor_by_desc
(
const
std
::
string
&
sdk_desc
);
int
create_predictor
();
int
create_predictor
();
int
destroy_predictor
();
int
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
int
destroy_predictor
();
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
int_feed
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res
,
// NOLINT
const
int
&
pid
);
int
batch_predict
(
int
batch_predict
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>&
float_feed_batch
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>&
float_feed_batch
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>&
float_shape
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>&
int_feed_batch
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>&
int_feed_batch
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>&
int_shape
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res_batch
,
// NOLINT
PredictorRes
&
predict_res_batch
,
// NOLINT
const
int
&
pid
);
const
int
&
pid
);
...
...
core/general-client/src/general_model.cpp
浏览文件 @
fb061bd6
...
@@ -132,152 +132,22 @@ int PredictorClient::create_predictor() {
...
@@ -132,152 +132,22 @@ int PredictorClient::create_predictor() {
_api
.
thrd_initialize
();
_api
.
thrd_initialize
();
}
}
int
PredictorClient
::
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res
,
const
int
&
pid
)
{
// NOLINT
predict_res
.
_int64_map
.
clear
();
predict_res
.
_float_map
.
clear
();
Timer
timeline
;
int64_t
preprocess_start
=
timeline
.
TimeStampUS
();
_api
.
thrd_clear
();
std
::
string
variant_tag
;
_predictor
=
_api
.
fetch_predictor
(
"general_model"
,
&
variant_tag
);
predict_res
.
set_variant_tag
(
variant_tag
);
Request
req
;
for
(
auto
&
name
:
fetch_name
)
{
req
.
add_fetch_var_names
(
name
);
}
std
::
vector
<
Tensor
*>
tensor_vec
;
FeedInst
*
inst
=
req
.
add_insts
();
for
(
auto
&
name
:
float_feed_name
)
{
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
}
for
(
auto
&
name
:
int_feed_name
)
{
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
}
int
vec_idx
=
0
;
for
(
auto
&
name
:
float_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
tensor
->
set_elem_type
(
1
);
for
(
int
j
=
0
;
j
<
float_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_float_data
(
float_feed
[
vec_idx
][
j
]);
}
vec_idx
++
;
}
VLOG
(
2
)
<<
"feed float feed var done."
;
vec_idx
=
0
;
for
(
auto
&
name
:
int_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
tensor
->
set_elem_type
(
0
);
for
(
int
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_int64_data
(
int_feed
[
vec_idx
][
j
]);
}
vec_idx
++
;
}
int64_t
preprocess_end
=
timeline
.
TimeStampUS
();
int64_t
client_infer_start
=
timeline
.
TimeStampUS
();
Response
res
;
int64_t
client_infer_end
=
0
;
int64_t
postprocess_start
=
0
;
int64_t
postprocess_end
=
0
;
if
(
FLAGS_profile_client
)
{
if
(
FLAGS_profile_server
)
{
req
.
set_profile_server
(
true
);
}
}
res
.
Clear
();
if
(
_predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req: "
<<
req
.
ShortDebugString
();
return
-
1
;
}
else
{
VLOG
(
2
)
<<
"predict done."
;
client_infer_end
=
timeline
.
TimeStampUS
();
postprocess_start
=
client_infer_end
;
for
(
auto
&
name
:
fetch_name
)
{
int
idx
=
_fetch_name_to_idx
[
name
];
VLOG
(
2
)
<<
"fetch name: "
<<
name
;
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
int
len
=
res
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
();
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: int64 len : "
<<
len
;
predict_res
.
_int64_map
[
name
].
resize
(
1
);
predict_res
.
_int64_map
[
name
][
0
].
resize
(
len
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
predict_res
.
_int64_map
[
name
][
0
][
i
]
=
res
.
insts
(
0
).
tensor_array
(
idx
).
int64_data
(
i
);
}
}
else
if
(
_fetch_name_to_type
[
name
]
==
1
)
{
int
len
=
res
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
();
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: float32 len : "
<<
len
;
predict_res
.
_float_map
[
name
].
resize
(
1
);
predict_res
.
_float_map
[
name
][
0
].
resize
(
len
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
predict_res
.
_float_map
[
name
][
0
][
i
]
=
res
.
insts
(
0
).
tensor_array
(
idx
).
float_data
(
i
);
}
}
postprocess_end
=
timeline
.
TimeStampUS
();
}
}
if
(
FLAGS_profile_client
)
{
std
::
ostringstream
oss
;
oss
<<
"PROFILE
\t
"
<<
"pid:"
<<
pid
<<
"
\t
"
<<
"prepro_0:"
<<
preprocess_start
<<
" "
<<
"prepro_1:"
<<
preprocess_end
<<
" "
<<
"client_infer_0:"
<<
client_infer_start
<<
" "
<<
"client_infer_1:"
<<
client_infer_end
<<
" "
;
if
(
FLAGS_profile_server
)
{
int
op_num
=
res
.
profile_time_size
()
/
2
;
for
(
int
i
=
0
;
i
<
op_num
;
++
i
)
{
oss
<<
"op"
<<
i
<<
"_0:"
<<
res
.
profile_time
(
i
*
2
)
<<
" "
;
oss
<<
"op"
<<
i
<<
"_1:"
<<
res
.
profile_time
(
i
*
2
+
1
)
<<
" "
;
}
}
oss
<<
"postpro_0:"
<<
postprocess_start
<<
" "
;
oss
<<
"postpro_1:"
<<
postprocess_end
;
fprintf
(
stderr
,
"%s
\n
"
,
oss
.
str
().
c_str
());
}
return
0
;
}
int
PredictorClient
::
batch_predict
(
int
PredictorClient
::
batch_predict
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
&
float_feed_batch
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
&
float_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
float_shape
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
&
int_feed_batch
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
&
int_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res_batch
,
PredictorRes
&
predict_res_batch
,
const
int
&
pid
)
{
const
int
&
pid
)
{
int
batch_size
=
std
::
max
(
float_feed_batch
.
size
(),
int_feed_batch
.
size
());
int
batch_size
=
std
::
max
(
float_feed_batch
.
size
(),
int_feed_batch
.
size
());
predict_res_batch
.
_int64_map
.
clear
();
predict_res_batch
.
_int64_value_map
.
clear
();
predict_res_batch
.
_float_map
.
clear
();
predict_res_batch
.
_float_value_map
.
clear
();
predict_res_batch
.
_shape_map
.
clear
();
predict_res_batch
.
_lod_map
.
clear
();
Timer
timeline
;
Timer
timeline
;
int64_t
preprocess_start
=
timeline
.
TimeStampUS
();
int64_t
preprocess_start
=
timeline
.
TimeStampUS
();
...
@@ -294,7 +164,7 @@ int PredictorClient::batch_predict(
...
@@ -294,7 +164,7 @@ int PredictorClient::batch_predict(
for
(
auto
&
name
:
fetch_name
)
{
for
(
auto
&
name
:
fetch_name
)
{
req
.
add_fetch_var_names
(
name
);
req
.
add_fetch_var_names
(
name
);
}
}
//
for
(
int
bi
=
0
;
bi
<
batch_size
;
bi
++
)
{
for
(
int
bi
=
0
;
bi
<
batch_size
;
bi
++
)
{
VLOG
(
2
)
<<
"prepare batch "
<<
bi
;
VLOG
(
2
)
<<
"prepare batch "
<<
bi
;
std
::
vector
<
Tensor
*>
tensor_vec
;
std
::
vector
<
Tensor
*>
tensor_vec
;
...
@@ -309,14 +179,14 @@ int PredictorClient::batch_predict(
...
@@ -309,14 +179,14 @@ int PredictorClient::batch_predict(
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
}
}
VLOG
(
2
)
<<
"batch ["
<<
bi
<<
"] int_feed_name and float_feed_name
"
VLOG
(
2
)
<<
"batch ["
<<
bi
<<
"] int_feed_name and float_feed_name"
<<
"prepared"
;
<<
"prepared"
;
int
vec_idx
=
0
;
int
vec_idx
=
0
;
for
(
auto
&
name
:
float_feed_name
)
{
for
(
auto
&
name
:
float_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
float_shape
[
vec_
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
tensor
->
add_shape
(
float_shape
[
vec_
idx
][
j
]);
}
}
tensor
->
set_elem_type
(
1
);
tensor
->
set_elem_type
(
1
);
for
(
int
j
=
0
;
j
<
float_feed
[
vec_idx
].
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
float_feed
[
vec_idx
].
size
();
++
j
)
{
...
@@ -332,8 +202,8 @@ int PredictorClient::batch_predict(
...
@@ -332,8 +202,8 @@ int PredictorClient::batch_predict(
for
(
auto
&
name
:
int_feed_name
)
{
for
(
auto
&
name
:
int_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
int_shape
[
vec_
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
tensor
->
add_shape
(
int_shape
[
vec_
idx
][
j
]);
}
}
tensor
->
set_elem_type
(
0
);
tensor
->
set_elem_type
(
0
);
VLOG
(
3
)
<<
"feed var name "
<<
name
<<
" index "
<<
vec_idx
VLOG
(
3
)
<<
"feed var name "
<<
name
<<
" index "
<<
vec_idx
...
@@ -371,39 +241,43 @@ int PredictorClient::batch_predict(
...
@@ -371,39 +241,43 @@ int PredictorClient::batch_predict(
}
else
{
}
else
{
client_infer_end
=
timeline
.
TimeStampUS
();
client_infer_end
=
timeline
.
TimeStampUS
();
postprocess_start
=
client_infer_end
;
postprocess_start
=
client_infer_end
;
for
(
auto
&
name
:
fetch_name
)
{
for
(
auto
&
name
:
fetch_name
)
{
predict_res_batch
.
_int64_map
[
name
].
resize
(
batch_size
);
int
idx
=
_fetch_name_to_idx
[
name
];
predict_res_batch
.
_float_map
[
name
].
resize
(
batch_size
);
int
shape_size
=
res
.
insts
(
0
).
tensor_array
(
idx
).
shape_size
();
predict_res_batch
.
_shape_map
[
name
].
resize
(
shape_size
);
for
(
int
i
=
0
;
i
<
shape_size
;
++
i
)
{
predict_res_batch
.
_shape_map
[
name
][
i
]
=
res
.
insts
(
0
).
tensor_array
(
idx
).
shape
(
i
);
}
int
lod_size
=
res
.
insts
(
0
).
tensor_array
(
idx
).
lod_size
();
if
(
lod_size
>
0
)
{
predict_res_batch
.
_lod_map
[
name
].
resize
(
lod_size
);
for
(
int
i
=
0
;
i
<
lod_size
;
++
i
)
{
predict_res_batch
.
_lod_map
[
name
][
i
]
=
res
.
insts
(
0
).
tensor_array
(
idx
).
lod
(
i
);
}
}
}
}
VLOG
(
2
)
<<
"response batch size "
<<
res
.
insts_size
();
VLOG
(
2
)
<<
"response var nmae "
<<
res
.
insts
(
0
).
tensor_array_size
();
for
(
auto
&
name
:
fetch_name
)
{
for
(
int
bi
=
0
;
bi
<
batch_size
;
bi
++
)
{
int
idx
=
_fetch_name_to_idx
[
name
];
int
idx
=
0
;
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
for
(
auto
&
name
:
fetch_name
)
{
predict_res_batch
.
_int64_value_map
[
name
].
resize
(
int
len
=
res
.
insts
(
bi
).
tensor_array
(
idx
).
data_size
();
res
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
());
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
int
size
=
res
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
();
int
len
=
res
.
insts
(
bi
).
tensor_array
(
idx
).
int64_data_size
();
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: int64 len : "
<<
len
;
predict_res_batch
.
_int64_value_map
[
name
][
i
]
=
predict_res_batch
.
_int64_map
[
name
][
bi
].
resize
(
len
);
res
.
insts
(
0
).
tensor_array
(
idx
).
int64_data
(
i
);
VLOG
(
2
)
<<
"fetch name "
<<
name
<<
" index "
<<
idx
<<
" first data "
}
<<
res
.
insts
(
bi
).
tensor_array
(
idx
).
int64_data
(
0
);
}
else
{
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
predict_res_batch
.
_float_value_map
[
name
].
resize
(
predict_res_batch
.
_int64_map
[
name
][
bi
][
i
]
=
res
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
());
res
.
insts
(
bi
).
tensor_array
(
idx
).
int64_data
(
i
);
int
size
=
res
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
();
}
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
}
else
if
(
_fetch_name_to_type
[
name
]
==
1
)
{
predict_res_batch
.
_float_value_map
[
name
][
i
]
=
int
len
=
res
.
insts
(
bi
).
tensor_array
(
idx
).
float_data_size
();
res
.
insts
(
0
).
tensor_array
(
idx
).
float_data
(
i
);
VLOG
(
2
)
<<
"fetch tensor : "
<<
name
<<
" type: float32 len : "
<<
len
;
predict_res_batch
.
_float_map
[
name
][
bi
].
resize
(
len
);
VLOG
(
2
)
<<
"fetch name "
<<
name
<<
" index "
<<
idx
<<
" first data "
<<
res
.
insts
(
bi
).
tensor_array
(
idx
).
float_data
(
0
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
predict_res_batch
.
_float_map
[
name
][
bi
][
i
]
=
res
.
insts
(
bi
).
tensor_array
(
idx
).
float_data
(
i
);
}
}
}
idx
+=
1
;
}
}
}
}
postprocess_end
=
timeline
.
TimeStampUS
();
postprocess_end
=
timeline
.
TimeStampUS
();
...
...
core/general-client/src/pybind_general_model.cpp
浏览文件 @
fb061bd6
...
@@ -40,6 +40,16 @@ PYBIND11_MODULE(serving_client, m) {
...
@@ -40,6 +40,16 @@ PYBIND11_MODULE(serving_client, m) {
return
self
.
get_float_by_name
(
name
);
return
self
.
get_float_by_name
(
name
);
},
},
py
::
return_value_policy
::
reference
)
py
::
return_value_policy
::
reference
)
.
def
(
"get_shape"
,
[](
PredictorRes
&
self
,
std
::
string
&
name
)
{
return
self
.
get_shape
(
name
);
},
py
::
return_value_policy
::
reference
)
.
def
(
"get_lod"
,
[](
PredictorRes
&
self
,
std
::
string
&
name
)
{
return
self
.
get_lod
(
name
);
},
py
::
return_value_policy
::
reference
)
.
def
(
"variant_tag"
,
.
def
(
"variant_tag"
,
[](
PredictorRes
&
self
)
{
return
self
.
variant_tag
();
});
[](
PredictorRes
&
self
)
{
return
self
.
variant_tag
();
});
...
@@ -67,38 +77,25 @@ PYBIND11_MODULE(serving_client, m) {
...
@@ -67,38 +77,25 @@ PYBIND11_MODULE(serving_client, m) {
[](
PredictorClient
&
self
)
{
self
.
create_predictor
();
})
[](
PredictorClient
&
self
)
{
self
.
create_predictor
();
})
.
def
(
"destroy_predictor"
,
.
def
(
"destroy_predictor"
,
[](
PredictorClient
&
self
)
{
self
.
destroy_predictor
();
})
[](
PredictorClient
&
self
)
{
self
.
destroy_predictor
();
})
.
def
(
"predict"
,
[](
PredictorClient
&
self
,
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res
,
const
int
&
pid
)
{
return
self
.
predict
(
float_feed
,
float_feed_name
,
int_feed
,
int_feed_name
,
fetch_name
,
predict_res
,
pid
);
})
.
def
(
"batch_predict"
,
.
def
(
"batch_predict"
,
[](
PredictorClient
&
self
,
[](
PredictorClient
&
self
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
&
float_feed_batch
,
&
float_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
float_shape
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
&
int_feed_batch
,
&
int_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res_batch
,
PredictorRes
&
predict_res_batch
,
const
int
&
pid
)
{
const
int
&
pid
)
{
return
self
.
batch_predict
(
float_feed_batch
,
return
self
.
batch_predict
(
float_feed_batch
,
float_feed_name
,
float_feed_name
,
float_shape
,
int_feed_batch
,
int_feed_batch
,
int_feed_name
,
int_feed_name
,
int_shape
,
fetch_name
,
fetch_name
,
predict_res_batch
,
predict_res_batch
,
pid
);
pid
);
...
...
core/general-server/op/general_response_op.cpp
浏览文件 @
fb061bd6
...
@@ -73,22 +73,21 @@ int GeneralResponseOp::inference() {
...
@@ -73,22 +73,21 @@ int GeneralResponseOp::inference() {
// response inst with only fetch_var_names
// response inst with only fetch_var_names
Response
*
res
=
mutable_data
<
Response
>
();
Response
*
res
=
mutable_data
<
Response
>
();
FetchInst
*
fetch_inst
=
res
->
add_insts
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
auto
&
idx
:
fetch_index
)
{
FetchInst
*
fetch_inst
=
res
->
add_insts
();
Tensor
*
tensor
=
fetch_inst
->
add_tensor_array
();
for
(
auto
&
idx
:
fetch_index
)
{
tensor
->
set_elem_type
(
1
);
Tensor
*
tensor
=
fetch_inst
->
add_tensor_array
();
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
// currently only response float tensor or lod_tensor
VLOG
(
2
)
<<
"out["
<<
idx
<<
"] is lod_tensor"
;
tensor
->
set_elem_type
(
1
);
for
(
int
k
=
0
;
k
<
in
->
at
(
idx
).
shape
.
size
();
++
k
)
{
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
VLOG
(
2
)
<<
"shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
VLOG
(
2
)
<<
"out["
<<
idx
<<
" is lod_tensor"
;
tensor
->
add_shape
(
in
->
at
(
idx
).
shape
[
k
]);
tensor
->
add_shape
(
-
1
);
}
}
else
{
}
else
{
VLOG
(
2
)
<<
"out["
<<
idx
<<
"] is tensor"
;
VLOG
(
2
)
<<
"out["
<<
idx
<<
"] is tensor"
;
for
(
int
k
=
1
;
k
<
in
->
at
(
idx
).
shape
.
size
();
++
k
)
{
for
(
int
k
=
0
;
k
<
in
->
at
(
idx
).
shape
.
size
();
++
k
)
{
VLOG
(
2
)
<<
"shape["
<<
k
-
1
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
VLOG
(
2
)
<<
"shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
in
->
at
(
idx
).
shape
[
k
]);
tensor
->
add_shape
(
in
->
at
(
idx
).
shape
[
k
]);
}
}
}
}
}
}
}
...
@@ -96,62 +95,42 @@ int GeneralResponseOp::inference() {
...
@@ -96,62 +95,42 @@ int GeneralResponseOp::inference() {
int
var_idx
=
0
;
int
var_idx
=
0
;
for
(
auto
&
idx
:
fetch_index
)
{
for
(
auto
&
idx
:
fetch_index
)
{
int
cap
=
1
;
int
cap
=
1
;
for
(
int
j
=
1
;
j
<
in
->
at
(
idx
).
shape
.
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
in
->
at
(
idx
).
shape
.
size
();
++
j
)
{
cap
*=
in
->
at
(
idx
).
shape
[
j
];
cap
*=
in
->
at
(
idx
).
shape
[
j
];
}
}
if
(
in
->
at
(
idx
).
dtype
==
paddle
::
PaddleDType
::
INT64
)
{
if
(
in
->
at
(
idx
).
dtype
==
paddle
::
PaddleDType
::
INT64
)
{
int64_t
*
data_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
idx
).
data
.
data
());
int64_t
*
data_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
idx
).
data
.
data
());
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
0
);
for
(
int
k
=
in
->
at
(
idx
).
lod
[
0
][
j
];
k
<
in
->
at
(
idx
).
lod
[
0
][
j
+
1
];
for
(
int
j
=
0
;
j
<
in
->
at
(
idx
).
lod
[
0
].
size
();
++
j
)
{
k
++
)
{
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_lod
(
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
in
->
at
(
idx
).
lod
[
0
][
j
]);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
k
]);
}
}
for
(
int
j
=
0
;
j
<
cap
;
++
j
)
{
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
j
]);
}
}
}
else
{
}
else
{
int
var_size
=
in
->
at
(
idx
).
shape
[
0
];
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
0
);
if
(
var_size
==
batch_size
)
{
for
(
int
j
=
0
;
j
<
cap
;
++
j
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
j
]);
for
(
int
k
=
j
*
cap
;
k
<
(
j
+
1
)
*
cap
;
++
k
)
{
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
k
]);
}
}
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
0
]);
}
}
}
}
}
var_idx
++
;
var_idx
++
;
}
else
if
(
in
->
at
(
idx
).
dtype
==
paddle
::
PaddleDType
::
FLOAT32
)
{
}
else
if
(
in
->
at
(
idx
).
dtype
==
paddle
::
PaddleDType
::
FLOAT32
)
{
float
*
data_ptr
=
static_cast
<
float
*>
(
in
->
at
(
idx
).
data
.
data
());
float
*
data_ptr
=
static_cast
<
float
*>
(
in
->
at
(
idx
).
data
.
data
());
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
0
);
for
(
int
k
=
in
->
at
(
idx
).
lod
[
0
][
j
];
k
<
in
->
at
(
idx
).
lod
[
0
][
j
+
1
];
for
(
int
j
=
0
;
j
<
in
->
at
(
idx
).
lod
[
0
].
size
();
++
j
)
{
k
++
)
{
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_lod
(
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
in
->
at
(
idx
).
lod
[
0
][
j
]);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
k
]);
}
}
for
(
int
j
=
0
;
j
<
cap
;
++
j
)
{
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
j
]);
}
}
}
else
{
}
else
{
int
var_size
=
in
->
at
(
idx
).
shape
[
0
];
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
0
);
if
(
var_size
==
batch_size
)
{
for
(
int
j
=
0
;
j
<
cap
;
++
j
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
j
]);
for
(
int
k
=
j
*
cap
;
k
<
(
j
+
1
)
*
cap
;
++
k
)
{
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
k
]);
}
}
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
0
]);
}
}
}
}
}
var_idx
++
;
var_idx
++
;
...
...
core/general-server/proto/general_model_service.proto
浏览文件 @
fb061bd6
...
@@ -26,6 +26,7 @@ message Tensor {
...
@@ -26,6 +26,7 @@ message Tensor {
repeated
float
float_data
=
4
;
repeated
float
float_data
=
4
;
optional
int32
elem_type
=
5
;
optional
int32
elem_type
=
5
;
repeated
int32
shape
=
6
;
repeated
int32
shape
=
6
;
repeated
int32
lod
=
7
;
// only for fetch tensor currently
};
};
message
FeedInst
{
repeated
Tensor
tensor_array
=
1
;
};
message
FeedInst
{
repeated
Tensor
tensor_array
=
1
;
};
...
...
core/sdk-cpp/proto/general_model_service.proto
浏览文件 @
fb061bd6
...
@@ -26,6 +26,7 @@ message Tensor {
...
@@ -26,6 +26,7 @@ message Tensor {
repeated
float
float_data
=
4
;
repeated
float
float_data
=
4
;
optional
int32
elem_type
=
5
;
optional
int32
elem_type
=
5
;
repeated
int32
shape
=
6
;
repeated
int32
shape
=
6
;
repeated
int32
lod
=
7
;
// only for fetch tensor currently
};
};
message
FeedInst
{
repeated
Tensor
tensor_array
=
1
;
};
message
FeedInst
{
repeated
Tensor
tensor_array
=
1
;
};
...
...
python/paddle_serving_client/__init__.py
浏览文件 @
fb061bd6
...
@@ -18,6 +18,7 @@ import os
...
@@ -18,6 +18,7 @@ import os
from
.proto
import
sdk_configure_pb2
as
sdk
from
.proto
import
sdk_configure_pb2
as
sdk
from
.proto
import
general_model_config_pb2
as
m_config
from
.proto
import
general_model_config_pb2
as
m_config
import
google.protobuf.text_format
import
google.protobuf.text_format
import
numpy
as
np
import
time
import
time
import
sys
import
sys
...
@@ -120,6 +121,7 @@ class Client(object):
...
@@ -120,6 +121,7 @@ class Client(object):
self
.
fetch_names_to_idx_
=
{}
self
.
fetch_names_to_idx_
=
{}
self
.
lod_tensor_set
=
set
()
self
.
lod_tensor_set
=
set
()
self
.
feed_tensor_len
=
{}
self
.
feed_tensor_len
=
{}
for
i
,
var
in
enumerate
(
model_conf
.
feed_var
):
for
i
,
var
in
enumerate
(
model_conf
.
feed_var
):
self
.
feed_names_to_idx_
[
var
.
alias_name
]
=
i
self
.
feed_names_to_idx_
[
var
.
alias_name
]
=
i
self
.
feed_types_
[
var
.
alias_name
]
=
var
.
feed_type
self
.
feed_types_
[
var
.
alias_name
]
=
var
.
feed_type
...
@@ -132,11 +134,11 @@ class Client(object):
...
@@ -132,11 +134,11 @@ class Client(object):
for
dim
in
self
.
feed_shapes_
[
var
.
alias_name
]:
for
dim
in
self
.
feed_shapes_
[
var
.
alias_name
]:
counter
*=
dim
counter
*=
dim
self
.
feed_tensor_len
[
var
.
alias_name
]
=
counter
self
.
feed_tensor_len
[
var
.
alias_name
]
=
counter
for
i
,
var
in
enumerate
(
model_conf
.
fetch_var
):
for
i
,
var
in
enumerate
(
model_conf
.
fetch_var
):
self
.
fetch_names_to_idx_
[
var
.
alias_name
]
=
i
self
.
fetch_names_to_idx_
[
var
.
alias_name
]
=
i
self
.
fetch_names_to_type_
[
var
.
alias_name
]
=
var
.
fetch_type
self
.
fetch_names_to_type_
[
var
.
alias_name
]
=
var
.
fetch_type
if
var
.
is_lod_tensor
:
self
.
lod_tensor_set
.
add
(
var
.
alias_name
)
return
return
def
add_variant
(
self
,
tag
,
cluster
,
variant_weight
):
def
add_variant
(
self
,
tag
,
cluster
,
variant_weight
):
...
@@ -164,7 +166,6 @@ class Client(object):
...
@@ -164,7 +166,6 @@ class Client(object):
"parameter endpoints({}) will not take effect, because you use the add_variant function."
.
"parameter endpoints({}) will not take effect, because you use the add_variant function."
.
format
(
endpoints
))
format
(
endpoints
))
sdk_desc
=
self
.
predictor_sdk_
.
gen_desc
()
sdk_desc
=
self
.
predictor_sdk_
.
gen_desc
()
print
(
sdk_desc
)
self
.
client_handle_
.
create_predictor_by_desc
(
sdk_desc
.
SerializeToString
(
self
.
client_handle_
.
create_predictor_by_desc
(
sdk_desc
.
SerializeToString
(
))
))
...
@@ -205,6 +206,8 @@ class Client(object):
...
@@ -205,6 +206,8 @@ class Client(object):
float_slot_batch
=
[]
float_slot_batch
=
[]
int_feed_names
=
[]
int_feed_names
=
[]
float_feed_names
=
[]
float_feed_names
=
[]
int_shape
=
[]
float_shape
=
[]
fetch_names
=
[]
fetch_names
=
[]
counter
=
0
counter
=
0
batch_size
=
len
(
feed_batch
)
batch_size
=
len
(
feed_batch
)
...
@@ -221,50 +224,65 @@ class Client(object):
...
@@ -221,50 +224,65 @@ class Client(object):
for
i
,
feed_i
in
enumerate
(
feed_batch
):
for
i
,
feed_i
in
enumerate
(
feed_batch
):
int_slot
=
[]
int_slot
=
[]
float_slot
=
[]
float_slot
=
[]
int_shape
=
[]
float_shape
=
[]
for
key
in
feed_i
:
for
key
in
feed_i
:
if
key
not
in
self
.
feed_names_
:
if
key
not
in
self
.
feed_names_
:
raise
ValueError
(
"Wrong feed name: {}."
.
format
(
key
))
raise
ValueError
(
"Wrong feed name: {}."
.
format
(
key
))
self
.
shape_check
(
feed_i
,
key
)
if
not
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
self
.
shape_check
(
feed_i
,
key
)
if
self
.
feed_types_
[
key
]
==
int_type
:
if
self
.
feed_types_
[
key
]
==
int_type
:
if
i
==
0
:
if
i
==
0
:
int_feed_names
.
append
(
key
)
int_feed_names
.
append
(
key
)
int_slot
.
append
(
feed_i
[
key
])
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
int_shape
.
append
(
list
(
feed_i
[
key
].
shape
))
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
int_slot
.
append
(
np
.
reshape
(
feed_i
[
key
],
(
-
1
)).
tolist
())
else
:
int_slot
.
append
(
feed_i
[
key
])
elif
self
.
feed_types_
[
key
]
==
float_type
:
elif
self
.
feed_types_
[
key
]
==
float_type
:
if
i
==
0
:
if
i
==
0
:
float_feed_names
.
append
(
key
)
float_feed_names
.
append
(
key
)
float_slot
.
append
(
feed_i
[
key
])
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
if
len
(
int_slot
)
+
len
(
float_slot
)
==
0
:
float_shape
.
append
(
list
(
feed_i
[
key
].
shape
))
raise
ValueError
(
"No feed data for predict."
)
if
isinstance
(
feed_i
[
key
],
np
.
ndarray
):
float_slot
.
append
(
np
.
reshape
(
feed_i
[
key
],
(
-
1
)).
tolist
())
else
:
float_slot
.
append
(
feed_i
[
key
])
int_slot_batch
.
append
(
int_slot
)
int_slot_batch
.
append
(
int_slot
)
float_slot_batch
.
append
(
float_slot
)
float_slot_batch
.
append
(
float_slot
)
result_batch
=
self
.
result_handle_
result_batch
=
self
.
result_handle_
res
=
self
.
client_handle_
.
batch_predict
(
res
=
self
.
client_handle_
.
batch_predict
(
float_slot_batch
,
float_feed_names
,
int_slot_batch
,
int_feed_names
,
float_slot_batch
,
float_feed_names
,
float_shape
,
int_slot_batch
,
fetch_names
,
result_batch
,
self
.
pid
)
int_feed_names
,
int_shape
,
fetch_names
,
result_batch
,
self
.
pid
)
if
res
==
-
1
:
if
res
==
-
1
:
return
None
return
None
result_map_batch
=
[]
result_map_batch
=
[]
result_map
=
{}
result_map
=
{}
# result map needs to be a numpy array
for
i
,
name
in
enumerate
(
fetch_names
):
for
i
,
name
in
enumerate
(
fetch_names
):
if
self
.
fetch_names_to_type_
[
name
]
==
int_type
:
if
self
.
fetch_names_to_type_
[
name
]
==
int_type
:
result_map
[
name
]
=
result_batch
.
get_int64_by_name
(
name
)
result_map
[
name
]
=
result_batch
.
get_int64_by_name
(
name
)
shape
=
result_batch
.
get_shape
(
name
)
result_map
[
name
]
=
np
.
array
(
result_map
[
name
])
result_map
[
name
].
shape
=
shape
if
name
in
self
.
lod_tensor_set
:
result_map
[
"{}.lod"
.
format
(
name
)]
=
result_batch
.
get_lod
(
name
)
elif
self
.
fetch_names_to_type_
[
name
]
==
float_type
:
elif
self
.
fetch_names_to_type_
[
name
]
==
float_type
:
result_map
[
name
]
=
result_batch
.
get_float_by_name
(
name
)
result_map
[
name
]
=
result_batch
.
get_float_by_name
(
name
)
for
i
in
range
(
batch_size
):
shape
=
result_batch
.
get_shape
(
name
)
single_result
=
{}
result_map
[
name
]
=
np
.
array
(
result_map
[
name
])
for
key
in
result_map
:
result_map
[
name
].
shape
=
shape
single_result
[
key
]
=
result_map
[
key
][
i
]
if
name
in
self
.
lod_tensor_set
:
result_map_batch
.
append
(
single_result
)
result_map
[
"{}.lod"
.
format
(
name
)]
=
result_batch
.
get_lod
(
name
)
if
batch_size
==
1
:
return
[
result_map_batch
[
0
],
self
.
result_handle_
.
variant_tag
()
return
result_map
]
if
need_variant_tag
else
result_map_batch
[
0
]
else
:
return
[
result_map_batch
,
self
.
result_handle_
.
variant_tag
()
]
if
need_variant_tag
else
result_map_batch
def
release
(
self
):
def
release
(
self
):
self
.
client_handle_
.
destroy_predictor
()
self
.
client_handle_
.
destroy_predictor
()
...
...
python/requirements.txt
浏览文件 @
fb061bd6
protobuf>=3.1.0
protobuf>=3.1.0
six
six
paddlepaddle-gpu
paddlepaddle-gpu
numpy
python/setup.py.client.in
浏览文件 @
fb061bd6
...
@@ -53,7 +53,7 @@ if '${PACK}' == 'ON':
...
@@ -53,7 +53,7 @@ if '${PACK}' == 'ON':
REQUIRED_PACKAGES = [
REQUIRED_PACKAGES = [
'six >= 1.10.0', 'protobuf >= 3.1.0'
'six >= 1.10.0', 'protobuf >= 3.1.0'
, 'numpy'
]
]
if not find_package("paddlepaddle") and not find_package("paddlepaddle-gpu"):
if not find_package("paddlepaddle") and not find_package("paddlepaddle-gpu"):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录