Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
fa9cac61
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fa9cac61
编写于
12月 01, 2020
作者:
T
TeslaZhao
提交者:
GitHub
12月 01, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into add-dockerfile
上级
ee8293e1
5713b507
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
106 addition
and
31 deletion
+106
-31
doc/FAQ.md
doc/FAQ.md
+50
-0
python/examples/pipeline/imdb_model_ensemble/README_CN.md
python/examples/pipeline/imdb_model_ensemble/README_CN.md
+2
-7
python/examples/pipeline/imdb_model_ensemble/test_pipeline_server.py
...ples/pipeline/imdb_model_ensemble/test_pipeline_server.py
+7
-3
python/examples/pipeline/ocr/local_service_pipeline_server.py
...on/examples/pipeline/ocr/local_service_pipeline_server.py
+11
-9
python/examples/pipeline/ocr/pipeline_http_client.py
python/examples/pipeline/ocr/pipeline_http_client.py
+1
-1
python/examples/pipeline/ocr/pipeline_rpc_client.py
python/examples/pipeline/ocr/pipeline_rpc_client.py
+2
-2
python/examples/pipeline/simple_web_service/config.yml
python/examples/pipeline/simple_web_service/config.yml
+1
-0
python/paddle_serving_client/io/__init__.py
python/paddle_serving_client/io/__init__.py
+6
-3
python/pipeline/local_service_handler.py
python/pipeline/local_service_handler.py
+11
-1
python/pipeline/operator.py
python/pipeline/operator.py
+15
-5
未找到文件。
doc/FAQ.md
浏览文件 @
fa9cac61
...
...
@@ -4,6 +4,35 @@
## 基础知识
#### Q: Paddle Serving 、Paddle Inference、PaddleHub Serving三者的区别及联系?
**A:**
paddle serving是远程服务,即发起预测的设备(手机、浏览器、客户端等)与实际预测的硬件不在一起。 paddle inference是一个library,适合嵌入到一个大系统中保证预测效率,paddle serving调用了paddle inference做远程服务。paddlehub serving可以认为是一个示例,都会使用paddle serving作为统一预测服务入口。如果在web端交互,一般是调用远程服务的形式,可以使用paddle serving的web service搭建。
#### Q: paddle-serving是否支持Int32支持
**A:**
在protobuf定feed_type和fetch_type编号与数据类型对应如下
0-int64
1-float32
2-int32
#### Q: paddle-serving是否支持windows和Linux环境下的多线程调用
**A:**
客户端可以发起多线程访问调用服务端
#### Q: paddle-serving如何修改消息大小限制
**A:**
在server端和client但通过FLAGS_max_body_size来扩大数据量限制,单位为字节,默认为64MB
#### Q: paddle-serving客户端目前支持哪些语言
**A:**
java c++ python
#### Q: paddle-serving目前支持哪些协议
**A:**
http rpc
## 编译问题
...
...
@@ -46,7 +75,15 @@ InvalidArgumentError: Device id must be less than GPU count, but received id is:
**A:**
目前(0.4.0)仅支持CentOS,具体列表查阅
[
这里
](
https://github.com/PaddlePaddle/Serving/blob/develop/doc/DOCKER_IMAGES.md
)
#### Q: python编译的GCC版本与serving的版本不匹配
**A:**
:1)使用
[
GPU docker
](
https://github.com/PaddlePaddle/Serving/blob/develop/doc/RUN_IN_DOCKER.md#gpunvidia-docker
)
解决环境问题
2)修改anaconda的虚拟环境下安装的python的gcc版本
[
参考
](
https://www.jianshu.com/p/c498b3d86f77
)
#### Q: paddle-serving是否支持本地离线安装
**A:**
支持离线部署,需要把一些相关的
[
依赖包
](
https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE.md
)
提前准备安装好
## 预测问题
...
...
@@ -105,6 +142,19 @@ client端的日志直接打印到标准输出。
通过在部署服务之前 'export GLOG_v=3'可以输出更为详细的日志信息。
#### Q: paddle-serving启动成功后,相关的日志在哪里设置
**A:**
1)警告是glog组件打印的,告知glog初始化之前日志打印在STDERR
2)一般采用GLOG_v方式启动服务同时设置日志级别。
例如:
```
GLOG_v=2 python -m paddle_serving_server.serve --model xxx_conf/ --port 9999
```
#### Q: (GLOG_v=2下)Server端日志一切正常,但Client端始终得不到正确的预测结果
**A:**
可能是配置文件有问题,检查下配置文件(is_load_tensor,fetch_type等有没有问题)
...
...
python/examples/pipeline/imdb_model_ensemble/README_CN.md
浏览文件 @
fa9cac61
...
...
@@ -8,8 +8,8 @@ sh get_data.sh
## 启动服务
```
python -m paddle_serving_server
_gpu
.serve --model imdb_cnn_model --port 9292 &> cnn.log &
python -m paddle_serving_server
_gpu
.serve --model imdb_bow_model --port 9393 &> bow.log &
python -m paddle_serving_server.serve --model imdb_cnn_model --port 9292 &> cnn.log &
python -m paddle_serving_server.serve --model imdb_bow_model --port 9393 &> bow.log &
python test_pipeline_server.py &>pipeline.log &
```
...
...
@@ -17,8 +17,3 @@ python test_pipeline_server.py &>pipeline.log &
```
python test_pipeline_client.py
```
## HTTP 测试
```
curl -X POST -k http://localhost:9999/prediction -d '{"key": ["words"], "value": ["i am very sad | 0"]}'
```
python/examples/pipeline/imdb_model_ensemble/test_pipeline_server.py
浏览文件 @
fa9cac61
...
...
@@ -41,7 +41,9 @@ class ImdbRequestOp(RequestOp):
continue
words
=
request
.
value
[
idx
]
word_ids
,
_
=
self
.
imdb_dataset
.
get_words_and_label
(
words
)
dictdata
[
key
]
=
np
.
array
(
word_ids
)
word_len
=
len
(
word_ids
)
dictdata
[
key
]
=
np
.
array
(
word_ids
).
reshape
(
word_len
,
1
)
dictdata
[
"{}.lod"
.
format
(
key
)]
=
[
0
,
word_len
]
return
dictdata
...
...
@@ -77,16 +79,18 @@ bow_op = Op(name="bow",
server_endpoints
=
[
"127.0.0.1:9393"
],
fetch_list
=
[
"prediction"
],
client_config
=
"imdb_bow_client_conf/serving_client_conf.prototxt"
,
client_type
=
'brpc'
,
concurrency
=
1
,
timeout
=-
1
,
retry
=
1
,
batch_size
=
3
,
auto_batching_timeout
=
1000
)
batch_size
=
1
,
auto_batching_timeout
=
None
)
cnn_op
=
Op
(
name
=
"cnn"
,
input_ops
=
[
read_op
],
server_endpoints
=
[
"127.0.0.1:9292"
],
fetch_list
=
[
"prediction"
],
client_config
=
"imdb_cnn_client_conf/serving_client_conf.prototxt"
,
client_type
=
'brpc'
,
concurrency
=
1
,
timeout
=-
1
,
retry
=
1
,
...
...
python/examples/pipeline/ocr/local_service_pipeline_server.py
浏览文件 @
fa9cac61
...
...
@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_server
_gpu
.pipeline
import
Op
,
RequestOp
,
ResponseOp
from
paddle_serving_server
_gpu
.pipeline
import
PipelineServer
from
paddle_serving_server
_gpu
.pipeline.proto
import
pipeline_service_pb2
from
paddle_serving_server
_gpu
.pipeline.channel
import
ChannelDataEcode
from
paddle_serving_server
_gpu.pipeline
import
LocalRpc
ServiceHandler
from
paddle_serving_server.pipeline
import
Op
,
RequestOp
,
ResponseOp
from
paddle_serving_server.pipeline
import
PipelineServer
from
paddle_serving_server.pipeline.proto
import
pipeline_service_pb2
from
paddle_serving_server.pipeline.channel
import
ChannelDataEcode
from
paddle_serving_server
.pipeline
import
Local
ServiceHandler
import
numpy
as
np
import
cv2
import
time
...
...
@@ -56,9 +56,11 @@ class DetOp(Op):
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
# Note: class variables(self.var) can only be used in process op mode
self
.
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
print
(
self
.
im
)
self
.
ori_h
,
self
.
ori_w
,
_
=
self
.
im
.
shape
det_img
=
self
.
det_preprocess
(
self
.
im
)
_
,
self
.
new_h
,
self
.
new_w
=
det_img
.
shape
print
(
"image"
,
det_img
)
return
{
"image"
:
det_img
}
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
...
...
@@ -111,11 +113,11 @@ read_op = RequestOp()
det_op
=
DetOp
(
name
=
"det"
,
input_ops
=
[
read_op
],
local_rpc_service_handler
=
LocalRpcServiceHandler
(
client_type
=
"local_predictor"
,
local_service_handler
=
LocalServiceHandler
(
model_config
=
"ocr_det_model"
,
workdir
=
"det_workdir"
,
# defalut: "workdir"
thread_num
=
2
,
# defalut: 2
devices
=
"0"
,
# gpu0. defalut: "" (cpu)
mem_optim
=
True
,
# defalut: True
ir_optim
=
False
,
# defalut: False
available_port_generator
=
None
),
# defalut: None
...
...
@@ -123,8 +125,8 @@ det_op = DetOp(
rec_op
=
RecOp
(
name
=
"rec"
,
input_ops
=
[
det_op
],
local_rpc_service_handler
=
LocalRpcServiceHandler
(
model_config
=
"ocr_rec_model"
),
client_type
=
"local_predictor"
,
local_service_handler
=
LocalServiceHandler
(
model_config
=
"ocr_rec_model"
),
concurrency
=
1
)
response_op
=
ResponseOp
(
input_ops
=
[
rec_op
])
...
...
python/examples/pipeline/ocr/pipeline_http_client.py
浏览文件 @
fa9cac61
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_server
_gpu
.pipeline
import
PipelineClient
from
paddle_serving_server.pipeline
import
PipelineClient
import
numpy
as
np
import
requests
import
json
...
...
python/examples/pipeline/ocr/pipeline_rpc_client.py
浏览文件 @
fa9cac61
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_server
_gpu
.pipeline
import
PipelineClient
from
paddle_serving_server.pipeline
import
PipelineClient
import
numpy
as
np
import
requests
import
json
...
...
@@ -33,6 +33,6 @@ for img_file in os.listdir(test_img_dir):
image_data
=
file
.
read
()
image
=
cv2_to_base64
(
image_data
)
for
i
in
range
(
4
):
for
i
in
range
(
1
):
ret
=
client
.
predict
(
feed_dict
=
{
"image"
:
image
},
fetch
=
[
"res"
])
print
(
ret
)
python/examples/pipeline/simple_web_service/config.yml
浏览文件 @
fa9cac61
...
...
@@ -7,3 +7,4 @@ op:
local_service_conf
:
model_config
:
uci_housing_model
devices
:
"
"
# "0,1"
client_type
:
brpc
python/paddle_serving_client/io/__init__.py
浏览文件 @
fa9cac61
...
...
@@ -92,9 +92,12 @@ def save_model(server_model_folder,
fetch_var
.
shape
.
extend
(
tmp_shape
)
config
.
fetch_var
.
extend
([
fetch_var
])
cmd
=
"mkdir -p {}"
.
format
(
client_config_folder
)
os
.
system
(
cmd
)
try
:
save_dirname
=
os
.
path
.
normpath
(
client_config_folder
)
os
.
makedirs
(
save_dirname
)
except
OSError
as
e
:
if
e
.
errno
!=
errno
.
EEXIST
:
raise
with
open
(
"{}/serving_client_conf.prototxt"
.
format
(
client_config_folder
),
"w"
)
as
fout
:
fout
.
write
(
str
(
config
))
...
...
python/pipeline/local_service_handler.py
浏览文件 @
fa9cac61
...
...
@@ -22,6 +22,7 @@ except ImportError:
from
paddle_serving_server
import
OpMaker
,
OpSeqMaker
,
Server
PACKAGE_VERSION
=
"CPU"
from
.
import
util
from
paddle_serving_app.local_predict
import
LocalPredictor
_LOGGER
=
logging
.
getLogger
(
__name__
)
_workdir_name_gen
=
util
.
NameGenerator
(
"workdir_"
)
...
...
@@ -30,6 +31,7 @@ _workdir_name_gen = util.NameGenerator("workdir_")
class
LocalServiceHandler
(
object
):
def
__init__
(
self
,
model_config
,
client_type
=
'local_predictor'
,
workdir
=
""
,
thread_num
=
2
,
devices
=
""
,
...
...
@@ -58,12 +60,13 @@ class LocalServiceHandler(object):
self
.
_port_list
.
append
(
available_port_generator
.
next
())
_LOGGER
.
info
(
"Model({}) will be launch in gpu device: {}. Port({})"
.
format
(
model_config
,
devices
,
self
.
_port_list
))
self
.
client_type
=
client_type
self
.
_workdir
=
workdir
self
.
_devices
=
devices
self
.
_thread_num
=
thread_num
self
.
_mem_optim
=
mem_optim
self
.
_ir_optim
=
ir_optim
self
.
local_predictor_client
=
None
self
.
_rpc_service_list
=
[]
self
.
_server_pros
=
[]
self
.
_fetch_vars
=
None
...
...
@@ -74,6 +77,13 @@ class LocalServiceHandler(object):
def
get_port_list
(
self
):
return
self
.
_port_list
def
get_client
(
self
):
# for local_predictor_only
if
self
.
local_predictor_client
is
None
:
self
.
local_predictor_client
=
LocalPredictor
()
self
.
local_predictor_client
.
load_model_config
(
"{}"
.
format
(
self
.
_model_config
),
gpu
=
False
,
profile
=
False
)
return
self
.
local_predictor_client
def
get_client_config
(
self
):
return
os
.
path
.
join
(
self
.
_model_config
,
"serving_server_conf.prototxt"
)
...
...
python/pipeline/operator.py
浏览文件 @
fa9cac61
...
...
@@ -51,6 +51,7 @@ class Op(object):
server_endpoints
=
None
,
fetch_list
=
None
,
client_config
=
None
,
client_type
=
None
,
concurrency
=
None
,
timeout
=
None
,
retry
=
None
,
...
...
@@ -68,6 +69,7 @@ class Op(object):
self
.
_server_endpoints
=
server_endpoints
self
.
_fetch_names
=
fetch_list
self
.
_client_config
=
client_config
self
.
client_type
=
client_type
self
.
_timeout
=
timeout
self
.
_retry
=
max
(
1
,
retry
)
self
.
_batch_size
=
batch_size
...
...
@@ -138,6 +140,7 @@ class Op(object):
if
self
.
client_type
==
"brpc"
or
self
.
client_type
==
"grpc"
:
service_handler
=
local_service_handler
.
LocalServiceHandler
(
model_config
=
model_config
,
client_type
=
self
.
client_type
,
workdir
=
local_service_conf
[
"workdir"
],
thread_num
=
local_service_conf
[
"thread_num"
],
devices
=
local_service_conf
[
"devices"
],
...
...
@@ -155,12 +158,13 @@ class Op(object):
self
.
_fetch_names
=
service_handler
.
get_fetch_list
(
)
elif
self
.
client_type
==
"local_predictor"
:
service_handler
=
local_service_handler
.
Local
Predictor
ServiceHandler
(
service_handler
=
local_service_handler
.
LocalServiceHandler
(
model_config
=
model_config
,
client_type
=
self
.
client_type
,
workdir
=
local_service_conf
[
"workdir"
],
thread_num
=
local_service_conf
[
"thread_num"
],
devices
=
local_service_conf
[
"devices"
])
service_handler
.
prepare_server
()
# get fetch_list
#
service_handler.prepare_server() # get fetch_list
self
.
local_predictor
=
service_handler
.
get_client
()
if
self
.
_client_config
is
None
:
self
.
_client_config
=
service_handler
.
get_client_config
(
...
...
@@ -210,6 +214,9 @@ class Op(object):
" service: local_service_handler is None."
))
return
port
=
self
.
_local_service_handler
.
get_port_list
()
#if self._local_service_handler.client_type == "local_predictor":
# _LOGGER.info("Op({}) use local predictor.")
# return
self
.
_local_service_handler
.
start_server
()
_LOGGER
.
info
(
"Op({}) use local rpc service at port: {}"
.
format
(
self
.
name
,
port
))
...
...
@@ -248,6 +255,9 @@ class Op(object):
else
:
raise
ValueError
(
"Failed to init client: unknow client "
"type {}"
.
format
(
self
.
client_type
))
if
self
.
_fetch_names
is
None
:
self
.
_fetch_names
=
client
.
fetch_names_
_LOGGER
.
info
(
"Op({}) has no fetch name set. So fetch all vars"
)
if
self
.
client_type
!=
"local_predictor"
:
client
.
connect
(
server_endpoints
)
return
client
...
...
@@ -310,7 +320,7 @@ class Op(object):
(
_
,
input_dict
),
=
input_dicts
.
items
()
return
input_dict
def
process
(
self
,
feed_batch
,
fetch_names
,
typical_logid
):
def
process
(
self
,
feed_batch
,
typical_logid
):
err
,
err_info
=
ChannelData
.
check_batch_npdata
(
feed_batch
)
if
err
!=
0
:
_LOGGER
.
critical
(
...
...
@@ -320,13 +330,13 @@ class Op(object):
if
self
.
client_type
==
"local_predictor"
:
call_result
=
self
.
client
.
predict
(
feed
=
feed_batch
[
0
],
fetch
=
fetch_names
,
fetch
=
self
.
_
fetch_names
,
batch
=
True
,
log_id
=
typical_logid
)
else
:
call_result
=
self
.
client
.
predict
(
feed
=
feed_batch
,
fetch
=
fetch_names
,
fetch
=
self
.
_
fetch_names
,
batch
=
True
,
log_id
=
typical_logid
)
if
isinstance
(
self
.
client
,
MultiLangClient
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录