未验证 提交 fa9cac61 编写于 作者: T TeslaZhao 提交者: GitHub

Merge branch 'develop' into add-dockerfile

......@@ -4,6 +4,35 @@
## 基础知识
#### Q: Paddle Serving 、Paddle Inference、PaddleHub Serving三者的区别及联系?
**A:** paddle serving是远程服务,即发起预测的设备(手机、浏览器、客户端等)与实际预测的硬件不在一起。 paddle inference是一个library,适合嵌入到一个大系统中保证预测效率,paddle serving调用了paddle inference做远程服务。paddlehub serving可以认为是一个示例,都会使用paddle serving作为统一预测服务入口。如果在web端交互,一般是调用远程服务的形式,可以使用paddle serving的web service搭建。
#### Q: paddle-serving是否支持Int32支持
**A:** 在protobuf定feed_type和fetch_type编号与数据类型对应如下
​ 0-int64
​ 1-float32
​ 2-int32
#### Q: paddle-serving是否支持windows和Linux环境下的多线程调用
**A:** 客户端可以发起多线程访问调用服务端
#### Q: paddle-serving如何修改消息大小限制
**A:** 在server端和client但通过FLAGS_max_body_size来扩大数据量限制,单位为字节,默认为64MB
#### Q: paddle-serving客户端目前支持哪些语言
**A:** java c++ python
#### Q: paddle-serving目前支持哪些协议
**A:** http rpc
## 编译问题
......@@ -46,7 +75,15 @@ InvalidArgumentError: Device id must be less than GPU count, but received id is:
**A:** 目前(0.4.0)仅支持CentOS,具体列表查阅[这里](https://github.com/PaddlePaddle/Serving/blob/develop/doc/DOCKER_IMAGES.md)
#### Q: python编译的GCC版本与serving的版本不匹配
**A:**:1)使用[GPU docker](https://github.com/PaddlePaddle/Serving/blob/develop/doc/RUN_IN_DOCKER.md#gpunvidia-docker)解决环境问题
​ 2)修改anaconda的虚拟环境下安装的python的gcc版本[参考](https://www.jianshu.com/p/c498b3d86f77)
#### Q: paddle-serving是否支持本地离线安装
**A:** 支持离线部署,需要把一些相关的[依赖包](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE.md)提前准备安装好
## 预测问题
......@@ -105,6 +142,19 @@ client端的日志直接打印到标准输出。
通过在部署服务之前 'export GLOG_v=3'可以输出更为详细的日志信息。
#### Q: paddle-serving启动成功后,相关的日志在哪里设置
**A:** 1)警告是glog组件打印的,告知glog初始化之前日志打印在STDERR
​ 2)一般采用GLOG_v方式启动服务同时设置日志级别。
例如:
```
GLOG_v=2 python -m paddle_serving_server.serve --model xxx_conf/ --port 9999
```
#### Q: (GLOG_v=2下)Server端日志一切正常,但Client端始终得不到正确的预测结果
**A:** 可能是配置文件有问题,检查下配置文件(is_load_tensor,fetch_type等有没有问题)
......
......@@ -8,8 +8,8 @@ sh get_data.sh
## 启动服务
```
python -m paddle_serving_server_gpu.serve --model imdb_cnn_model --port 9292 &> cnn.log &
python -m paddle_serving_server_gpu.serve --model imdb_bow_model --port 9393 &> bow.log &
python -m paddle_serving_server.serve --model imdb_cnn_model --port 9292 &> cnn.log &
python -m paddle_serving_server.serve --model imdb_bow_model --port 9393 &> bow.log &
python test_pipeline_server.py &>pipeline.log &
```
......@@ -17,8 +17,3 @@ python test_pipeline_server.py &>pipeline.log &
```
python test_pipeline_client.py
```
## HTTP 测试
```
curl -X POST -k http://localhost:9999/prediction -d '{"key": ["words"], "value": ["i am very sad | 0"]}'
```
......@@ -41,7 +41,9 @@ class ImdbRequestOp(RequestOp):
continue
words = request.value[idx]
word_ids, _ = self.imdb_dataset.get_words_and_label(words)
dictdata[key] = np.array(word_ids)
word_len = len(word_ids)
dictdata[key] = np.array(word_ids).reshape(word_len, 1)
dictdata["{}.lod".format(key)] = [0, word_len]
return dictdata
......@@ -77,16 +79,18 @@ bow_op = Op(name="bow",
server_endpoints=["127.0.0.1:9393"],
fetch_list=["prediction"],
client_config="imdb_bow_client_conf/serving_client_conf.prototxt",
client_type='brpc',
concurrency=1,
timeout=-1,
retry=1,
batch_size=3,
auto_batching_timeout=1000)
batch_size=1,
auto_batching_timeout=None)
cnn_op = Op(name="cnn",
input_ops=[read_op],
server_endpoints=["127.0.0.1:9292"],
fetch_list=["prediction"],
client_config="imdb_cnn_client_conf/serving_client_conf.prototxt",
client_type='brpc',
concurrency=1,
timeout=-1,
retry=1,
......
......@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_server_gpu.pipeline import Op, RequestOp, ResponseOp
from paddle_serving_server_gpu.pipeline import PipelineServer
from paddle_serving_server_gpu.pipeline.proto import pipeline_service_pb2
from paddle_serving_server_gpu.pipeline.channel import ChannelDataEcode
from paddle_serving_server_gpu.pipeline import LocalRpcServiceHandler
from paddle_serving_server.pipeline import Op, RequestOp, ResponseOp
from paddle_serving_server.pipeline import PipelineServer
from paddle_serving_server.pipeline.proto import pipeline_service_pb2
from paddle_serving_server.pipeline.channel import ChannelDataEcode
from paddle_serving_server.pipeline import LocalServiceHandler
import numpy as np
import cv2
import time
......@@ -56,9 +56,11 @@ class DetOp(Op):
data = np.fromstring(data, np.uint8)
# Note: class variables(self.var) can only be used in process op mode
self.im = cv2.imdecode(data, cv2.IMREAD_COLOR)
print(self.im)
self.ori_h, self.ori_w, _ = self.im.shape
det_img = self.det_preprocess(self.im)
_, self.new_h, self.new_w = det_img.shape
print("image", det_img)
return {"image": det_img}
def postprocess(self, input_dicts, fetch_dict):
......@@ -111,11 +113,11 @@ read_op = RequestOp()
det_op = DetOp(
name="det",
input_ops=[read_op],
local_rpc_service_handler=LocalRpcServiceHandler(
client_type="local_predictor",
local_service_handler=LocalServiceHandler(
model_config="ocr_det_model",
workdir="det_workdir", # defalut: "workdir"
thread_num=2, # defalut: 2
devices="0", # gpu0. defalut: "" (cpu)
mem_optim=True, # defalut: True
ir_optim=False, # defalut: False
available_port_generator=None), # defalut: None
......@@ -123,8 +125,8 @@ det_op = DetOp(
rec_op = RecOp(
name="rec",
input_ops=[det_op],
local_rpc_service_handler=LocalRpcServiceHandler(
model_config="ocr_rec_model"),
client_type="local_predictor",
local_service_handler=LocalServiceHandler(model_config="ocr_rec_model"),
concurrency=1)
response_op = ResponseOp(input_ops=[rec_op])
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server_gpu.pipeline import PipelineClient
from paddle_serving_server.pipeline import PipelineClient
import numpy as np
import requests
import json
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server_gpu.pipeline import PipelineClient
from paddle_serving_server.pipeline import PipelineClient
import numpy as np
import requests
import json
......@@ -33,6 +33,6 @@ for img_file in os.listdir(test_img_dir):
image_data = file.read()
image = cv2_to_base64(image_data)
for i in range(4):
for i in range(1):
ret = client.predict(feed_dict={"image": image}, fetch=["res"])
print(ret)
......@@ -7,3 +7,4 @@ op:
local_service_conf:
model_config: uci_housing_model
devices: "" # "0,1"
client_type: brpc
......@@ -92,9 +92,12 @@ def save_model(server_model_folder,
fetch_var.shape.extend(tmp_shape)
config.fetch_var.extend([fetch_var])
cmd = "mkdir -p {}".format(client_config_folder)
os.system(cmd)
try:
save_dirname = os.path.normpath(client_config_folder)
os.makedirs(save_dirname)
except OSError as e:
if e.errno != errno.EEXIST:
raise
with open("{}/serving_client_conf.prototxt".format(client_config_folder),
"w") as fout:
fout.write(str(config))
......
......@@ -22,6 +22,7 @@ except ImportError:
from paddle_serving_server import OpMaker, OpSeqMaker, Server
PACKAGE_VERSION = "CPU"
from . import util
from paddle_serving_app.local_predict import LocalPredictor
_LOGGER = logging.getLogger(__name__)
_workdir_name_gen = util.NameGenerator("workdir_")
......@@ -30,6 +31,7 @@ _workdir_name_gen = util.NameGenerator("workdir_")
class LocalServiceHandler(object):
def __init__(self,
model_config,
client_type='local_predictor',
workdir="",
thread_num=2,
devices="",
......@@ -58,12 +60,13 @@ class LocalServiceHandler(object):
self._port_list.append(available_port_generator.next())
_LOGGER.info("Model({}) will be launch in gpu device: {}. Port({})"
.format(model_config, devices, self._port_list))
self.client_type = client_type
self._workdir = workdir
self._devices = devices
self._thread_num = thread_num
self._mem_optim = mem_optim
self._ir_optim = ir_optim
self.local_predictor_client = None
self._rpc_service_list = []
self._server_pros = []
self._fetch_vars = None
......@@ -74,6 +77,13 @@ class LocalServiceHandler(object):
def get_port_list(self):
return self._port_list
def get_client(self): # for local_predictor_only
if self.local_predictor_client is None:
self.local_predictor_client = LocalPredictor()
self.local_predictor_client.load_model_config(
"{}".format(self._model_config), gpu=False, profile=False)
return self.local_predictor_client
def get_client_config(self):
return os.path.join(self._model_config, "serving_server_conf.prototxt")
......
......@@ -51,6 +51,7 @@ class Op(object):
server_endpoints=None,
fetch_list=None,
client_config=None,
client_type=None,
concurrency=None,
timeout=None,
retry=None,
......@@ -68,6 +69,7 @@ class Op(object):
self._server_endpoints = server_endpoints
self._fetch_names = fetch_list
self._client_config = client_config
self.client_type = client_type
self._timeout = timeout
self._retry = max(1, retry)
self._batch_size = batch_size
......@@ -138,6 +140,7 @@ class Op(object):
if self.client_type == "brpc" or self.client_type == "grpc":
service_handler = local_service_handler.LocalServiceHandler(
model_config=model_config,
client_type=self.client_type,
workdir=local_service_conf["workdir"],
thread_num=local_service_conf["thread_num"],
devices=local_service_conf["devices"],
......@@ -155,12 +158,13 @@ class Op(object):
self._fetch_names = service_handler.get_fetch_list(
)
elif self.client_type == "local_predictor":
service_handler = local_service_handler.LocalPredictorServiceHandler(
service_handler = local_service_handler.LocalServiceHandler(
model_config=model_config,
client_type=self.client_type,
workdir=local_service_conf["workdir"],
thread_num=local_service_conf["thread_num"],
devices=local_service_conf["devices"])
service_handler.prepare_server() # get fetch_list
#service_handler.prepare_server() # get fetch_list
self.local_predictor = service_handler.get_client()
if self._client_config is None:
self._client_config = service_handler.get_client_config(
......@@ -210,6 +214,9 @@ class Op(object):
" service: local_service_handler is None."))
return
port = self._local_service_handler.get_port_list()
#if self._local_service_handler.client_type == "local_predictor":
# _LOGGER.info("Op({}) use local predictor.")
# return
self._local_service_handler.start_server()
_LOGGER.info("Op({}) use local rpc service at port: {}"
.format(self.name, port))
......@@ -248,6 +255,9 @@ class Op(object):
else:
raise ValueError("Failed to init client: unknow client "
"type {}".format(self.client_type))
if self._fetch_names is None:
self._fetch_names = client.fetch_names_
_LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
if self.client_type != "local_predictor":
client.connect(server_endpoints)
return client
......@@ -310,7 +320,7 @@ class Op(object):
(_, input_dict), = input_dicts.items()
return input_dict
def process(self, feed_batch, fetch_names, typical_logid):
def process(self, feed_batch, typical_logid):
err, err_info = ChannelData.check_batch_npdata(feed_batch)
if err != 0:
_LOGGER.critical(
......@@ -320,13 +330,13 @@ class Op(object):
if self.client_type == "local_predictor":
call_result = self.client.predict(
feed=feed_batch[0],
fetch=fetch_names,
fetch=self._fetch_names,
batch=True,
log_id=typical_logid)
else:
call_result = self.client.predict(
feed=feed_batch,
fetch=fetch_names,
fetch=self._fetch_names,
batch=True,
log_id=typical_logid)
if isinstance(self.client, MultiLangClient):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册