提交 f3e55ffa 编写于 作者: T TeslaZhao

Update Official Docs

上级 7a8880d0
......@@ -17,7 +17,7 @@ PaddleOCR 提供的 PP-OCR 系列模型覆盖轻量级服务端、轻量级移
| 中英文通用服务端模型 | 143.4M | ch_ppocr_server_v2.0_xx | 服务器端 |
## 模型步骤
## 部署步骤
前提条件是你已完成[环境安装]()步骤,并已验证环境安装成功,此处不在赘述。
......@@ -155,7 +155,6 @@ op:
#min_subgraph_size: 3
```
**四.代码与配置信息绑定 **
第四步,实现代码和配置文件 Config.yml 绑定,以及设置多模型组合关系。具体包括:
......@@ -202,6 +201,40 @@ ocr_service.run_service()
**五.启动服务与验证**
启动服务前,可看到程序路径下所有文件路径如下:
```
.
├── 7.jpg
├── benchmark.py
├── benchmark.sh
├── config.yml
├── imgs
│   └── ggg.png
├── ocr_det_client
│   ├── serving_client_conf.prototxt
│   └── serving_client_conf.stream.prototxt
├── ocr_det_model
│   ├── inference.pdiparams
│   ├── inference.pdmodel
│   ├── serving_server_conf.prototxt
│   └── serving_server_conf.stream.prototxt
├── ocr_rec_client
│   ├── serving_client_conf.prototxt
│   └── serving_client_conf.stream.prototxt
├── ocr_rec_model
│   ├── inference.pdiparams
│   ├── inference.pdmodel
│   ├── serving_server_conf.prototxt
│   └── serving_server_conf.stream.prototxt
├── pipeline_http_client.py
├── pipeline_rpc_client.py
├── ppocr_keys_v1.txt
├── ProcessInfo.json
├── README_CN.md
├── README.md
└── web_service.py
```
运行程序 `web_service.py` 启动服务端
```
# Run Server
......
......@@ -8,5 +8,5 @@ Python Pipeline 使用案例请阅读[Python Pipeline 快速部署案例](./3-2_
通过阅读以下内容掌握 Python Pipeline 核心功能和使用方法、高阶功能用法和性能优化指南等。
- [Python Pipeline 框架设计](7-1_Python_Pipeline_Design_CN.md)
- [Python Pipeline 高阶用法](7-2_Python_Pipeline_Senior_CN.md)
- [Python Pipeline 核心功能](7-2_Python_Pipeline_Senior_CN.md)
- [Python Pipeline 优化指南](7-3_Python_Pipeline_Optimize_CN.md)
# Python Pipeline 核心功能
# Python Pipeline 框架设计
为了解决多个深度学习模型组合的复杂问题,Paddle Serving 团队设计了一个通用端到端多模型组合框架,其核心特点包括:
......@@ -58,6 +58,17 @@ ocr_service.prepare_pipeline_config("config.yml")
ocr_service.run_service()
```
与网络框架相关的配置在 `config.yml` 中设置。其中 `worker_num` 表示框架主线程 gRPC 线程池工作线程数,可理解成网络同步线程并发数。
其次,`rpc_port``http_port` 是服务端口,可同时开启,不允许同时为空。
```
worker_num: 10
# http 和 gRPC 服务端口
rpc_port: 9988
http_port: 18089
```
**二.图执行引擎层**
......@@ -135,6 +146,28 @@ Pipeline 服务日志在当前目录的 `PipelineServingLogs` 目录下,有3
- `pipeline.log.wf` : 记录 warning & error日志
- `pipeline.tracer` : 统计各个阶段耗时、channel 堆积信息
```
├── config.yml
├── get_data.sh
├── PipelineServingLogs
│   ├── pipeline.log
│   ├── pipeline.log.wf
│   └── pipeline.tracer
├── README_CN.md
├── README.md
├── uci_housing_client
│   ├── serving_client_conf.prototxt
│   └── serving_client_conf.stream.prototxt
├── uci_housing_model
│   ├── fc_0.b_0
│   ├── fc_0.w_0
│   ├── __model__
│   ├── serving_server_conf.prototxt
│   └── serving_server_conf.stream.prototxt
├── web_service_java.py
└── web_service.py
```
在服务发生异常时,错误信息会记录在 pipeline.log.wf 日志中。打印 tracer 日志要求在 config.yml 的 DAG 属性中添加 tracer 配置。
1. 日志与请求的唯一标识
......@@ -177,8 +210,42 @@ Pipeline 的日志模块在 `logger.py` 中定义,使用了 `logging.handlers.
```
**四. 服务超时与重试**
**四. 错误信息**
框架提供的错误信息如下所示, 完整信息在 `error_catch.py``CustomExceptionCode` 类中定义。
| 错误码 | 说明 |
| :---: | :-------------: |
| 0 | 成功 |
| 50 ~ 999 | 产品错误 |
| 3000 ~ 3999 | 框架内部服务错误 |
| 4000 ~ 4999 | 配置错误 |
| 5000 ~ 5999 | 用户输入错误 |
| 6000 ~ 6999 | 超时错误 |
| 7000 ~ 7999 | 类型检查错误 |
| 8000 ~ 8999 | 内部通讯错误 |
| 9000 ~ 9999 | 推理错误 |
| 10000 ~ | 其他错误 |
具体错误信息如下:
```
class CustomExceptionCode(enum.Enum):
OK = 0
PRODUCT_ERROR = 50
NOT_IMPLEMENTED = 3000
CLOSED_ERROR = 3001
NO_SERVICE = 3002
INIT_ERROR = 3003
CONF_ERROR = 4000
INPUT_PARAMS_ERROR = 5000
TIMEOUT = 6000
TYPE_ERROR = 7000
RPC_PACKAGE_ERROR = 8000
CLIENT_ERROR = 9000
UNKNOW = 10000
```
## 自定义信息
......
# Python Pipeline 高阶用法
# Python Pipeline 核心功能
在复杂业务场景中使用常规功能无法满足需求,本文介绍一些高阶用法。
- DAG 结构跳过某个 Op 运行
从设计上,Python Pipeline 框架实现轻量级的服务化部署,提供了丰富的核心功能,既能满足服务基本使用,又能满足特性需求。
- 安装与环境检查
- 服务启动与关闭
- 本地与远程推理
- 批量推理
- 单机多卡推理
- 多种计算芯片上推理
- 低精度推理
- TensorRT 推理加速
- MKLDNN 推理加速
- 低精度推理
- 复杂图结构 DAG 跳过某个 Op 运行
## 安装与环境检查
在运行 Python Pipeline 服务前,确保当前环境下可部署且通过[安装指南](./2-0_Index_CN.md)已完成安装。其次,`v0.8.0`及以上版本提供了环境检查功能,检验环境是否安装正确。
**一.DAG 结构跳过某个 Op 运行**
输入以下命令,进入环境检查程序。
```python
python3 -m paddle_serving_server.serve check
```
此应用场景一般在 Op 前后处理中有 if 条件判断时,不满足条件时,跳过后面处理。实际做法是在跳过此 Op 的 process 阶段,只要在 preprocess 做好判断,跳过 process 阶段,在和 postprocess 后直接返回即可。
preprocess 返回结果列表的第二个结果是 `is_skip_process=True` 表示是否跳过当前 Op 的 process 阶段,直接进入 postprocess 处理。
在环境检验程序中输入多条指令来检查,例如 `check_pipeline``check_all`等,完整指令列表如下。
| 指令 | 描述|
|---------|----|
|check_all | 检查 Paddle Inference、Pipeline Serving、C++ Serving。只打印检测结果,不记录日志|
|check_pipeline | 检查 Pipeline Serving,只打印检测结果,不记录日志|
|check_cpp | 检查 C++ Serving,只打印检测结果,不记录日志|
|check_inference | 检查 Paddle Inference 是否安装正确,只打印检测结果,不记录日志|
|debug | 发生报错后,该命令将打印提示日志到屏幕,并记录详细日志文件|
|exit | 退出|
```python
## Op::preprocess() 函数实现
def preprocess(self, input_dicts, data_id, log_id):
"""
In preprocess stage, assembling data for process stage. users can
override this function for model feed features.
Args:
input_dicts: input data to be preprocessed
data_id: inner unique id
log_id: global unique id for RTT
Return:
input_dict: data for process stage
is_skip_process: skip process stage or not, False default
prod_errcode: None default, otherwise, product errores occured.
It is handled in the same way as exception.
prod_errinfo: "" default
"""
# multiple previous Op
if len(input_dicts) != 1:
_LOGGER.critical(
self._log(
"Failed to run preprocess: this Op has multiple previous "
"inputs. Please override this func."))
os._exit(-1)
(_, input_dict), = input_dicts.items()
return input_dict, False, None, ""
程序会分别运行 cpu 和 gpu 示例。运行成功则打印 `Pipeline cpu environment running success
``Pipeline gpu environment running success`
```
以下示例 Jump::preprocess() 重载了原函数,返回了 True 字段
/usr/local/lib/python3.7/runpy.py:125: RuntimeWarning: 'paddle_serving_server.serve' found in sys.modules after import of package 'paddle_serving_server', but prior to execution of 'paddle_serving_server.serve'; this may result in unpredictable behaviour
warn(RuntimeWarning(msg))
Welcome to the check env shell.Type help to list commands.
(Cmd) check_pipeline
Pipeline cpu environment running success
Pipeline gpu environment running success
```
运行失败时,错误信息会记录到当前目录下 `stderr.log` 文件 和 `Pipeline_test_cpu/PipelineServingLogs` 目录下。用户可根据错误信息调试。
```
(Cmd) check_all
PaddlePaddle inference environment running success
C++ cpu environment running success
C++ gpu environment running failure, if you need this environment, please refer to https://github.com/PaddlePaddle/Serving/blob/develop/doc/Install_CN.md
Traceback (most recent call last):
File "/usr/local/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/local/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.7/site-packages/paddle_serving_server/serve.py", line 541, in <module>
Check_Env_Shell().cmdloop()
File "/usr/local/lib/python3.7/cmd.py", line 138, in cmdloop
stop = self.onecmd(line)
File "/usr/local/lib/python3.7/cmd.py", line 217, in onecmd
return func(arg)
File "/usr/local/lib/python3.7/site-packages/paddle_serving_server/serve.py", line 501, in do_check_all
check_env("all")
File "/usr/local/lib/python3.7/site-packages/paddle_serving_server/env_check/run.py", line 94, in check_env
run_test_cases(pipeline_test_cases, "Pipeline", is_open_std)
File "/usr/local/lib/python3.7/site-packages/paddle_serving_server/env_check/run.py", line 66, in run_test_cases
mv_log_to_new_dir(new_dir_path)
File "/usr/local/lib/python3.7/site-packages/paddle_serving_server/env_check/run.py", line 48, in mv_log_to_new_dir
shutil.move(file_path, dir_path)
File "/usr/local/lib/python3.7/shutil.py", line 555, in move
raise Error("Destination path '%s' already exists" % real_dst)
shutil.Error: Destination path '/home/work/Pipeline_test_cpu/PipelineServingLogs' already exists
```
## 服务启动与关闭
服务启动需要三类文件,PYTHON 程序、模型文件和配置文件。以[Python Pipeline 快速部署案例](./3-2_QuickStart_Pipeline_OCR_CN.md)为例,
```
.
├── config.yml
├── imgs
│   └── ggg.png
├── ocr_det_client
│   ├── serving_client_conf.prototxt
│   └── serving_client_conf.stream.prototxt
├── ocr_det_model
│   ├── inference.pdiparams
│   ├── inference.pdmodel
│   ├── serving_server_conf.prototxt
│   └── serving_server_conf.stream.prototxt
├── ocr_det.tar.gz
├── ocr_rec_client
│   ├── serving_client_conf.prototxt
│   └── serving_client_conf.stream.prototxt
├── ocr_rec_model
│   ├── inference.pdiparams
│   ├── inference.pdmodel
│   ├── serving_server_conf.prototxt
│   └── serving_server_conf.stream.prototxt
├── pipeline_http_client.py
├── pipeline_rpc_client.py
├── ppocr_keys_v1.txt
└── web_service.py
```
启动服务端程序运行 `web_service.py`,启动客户端程序运行 `pipeline_http_client.py``pipeline_rpc_client.py`。服务端启动的日志信息在 `PipelineServingLogs` 目录下可用于调试。
```
├── PipelineServingLogs
│   ├── pipeline.log
│   ├── pipeline.log.wf
│   └── pipeline.tracer
```
关闭程序可使用2种方式,
- 前台关闭程序:`Ctrl+C` 关停服务
- 后台关闭程序:
```python
class JumpOp(Op):
## Overload func JumpOp::preprocess
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
if input_dict.has_key("jump"):
return input_dict, True, None, ""
else
return input_dict, False, None, ""
python3 -m paddle_serving_server.serve stop # 触发 SIGINT 信号
python3 -m paddle_serving_server.serve kill # 触发 SIGKILL 信号,强制关闭
```
## 本地与远程推理
本地推理是指在服务所在机器环境下开启多进程推理,而远程推理是指本地服务请求远程 C++ Serving 推理服务。
本地推理的优势是实现简单,一般本地处理相比于远程推理耗时更低。而远程推理的优势是可实现 Python Pipeline 较难实现的功能,如部署加密模型,大模型推理。
Python Pipeline 的本地推理可参考如下配置,在 `uci` op 中 增加 `local_service_conf` 配置,并设置 `client_type: local_predictor`
```
op:
uci:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 10
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf:
#uci模型路径
model_config: uci_housing_model
#计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 0
#计算硬件ID,优先由device_type决定硬件类型。devices为""或空缺时为CPU预测;当为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: "" # "0,1"
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type: local_predictor
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["price"]
```
Python Pipeline 的远程推理可参考如下配置,设置 `client_type: brpc``server_endpoints``timeout` 和本地 `client_config`
```
op:
bow:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 1
#client连接类型,brpc
client_type: brpc
#Serving交互重试次数,默认不重试
retry: 1
#Serving交互超时时间, 单位ms
timeout: 3000
#Serving IPs
server_endpoints: ["127.0.0.1:9393"]
#bow模型client端配置
client_config: "imdb_bow_client_conf/serving_client_conf.prototxt"
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["prediction"]
```
**二. 批量推理**
## 批量推理
Pipeline 支持批量推理,通过增大 batch size 可以提高 GPU 利用率。Python Pipeline 支持3种 batch 形式以及适用的场景如下:
- 场景1:客户端打包批量数据(Client Batch)
- 场景2:服务端合并多个请求动态合并批量(Server auto-batching)
- 场景3:服务端拆分一个批量数据推理请求成为多个小块推理(Server mini-batch)
- 场景3:拆分一个大批量的推理请求为多个小批量推理请求(Server mini-batch)
1. 客户端打包批量数据
**一.客户端打包批量数据**
当输入数据是 numpy 类型,如shape 为[4, 3, 512, 512]的 numpy 数据,即4张图片,可直接作为输入数据。
当输入数据的 shape 不同时,需要按最大的shape的尺寸 Padding 对齐后发送给服务端
2. 服务端合并多个请求动态合并批量
**二.服务端合并多个请求动态合并批量**
有助于提升吞吐和计算资源的利用率,当多个请求的 shape 尺寸不相同时,不支持合并。当前有2种合并策略,分别是:
- 等待时间与最大批量结合(推荐):结合`batch_size``auto_batching_timeout`配合使用,实际请求的批量条数超过`batch_size`时会立即执行,不超过时会等待`auto_batching_timeout`时间再执行
......@@ -119,9 +248,9 @@ op:
```
**三.Mini-Batch**
3.服务端拆分一个批量数据推理请求成为多个小块推理:会降低批量数据 Padding 对齐的大小,从而提升速度。可参考 [OCR 示例](),核心思路是拆分数据成多个小批量,放入 list 对象 feed_list 并返回
拆分一个批量数据推理请求成为多个小块推理:会降低批量数据 Padding 对齐的大小,从而提升速度。可参考 [OCR 示例](),核心思路是拆分数据成多个小批量,放入 list 对象 feed_list 并返回
```
def preprocess(self, input_dicts, data_id, log_id):
......@@ -181,8 +310,7 @@ def preprocess(self, input_dicts, data_id, log_id):
return feed_list, False, None, ""
```
**三. 单机多卡推理**
## 单机多卡推理
单机多卡推理与 `config.yml` 中配置4个参数关系紧密,`is_thread_op``concurrency``device_type``devices`,必须在进程模型和 GPU 模式,每张卡上可分配多个进程,即 M 个 Op 进程与 N 个 GPU 卡绑定。
```
......@@ -218,8 +346,7 @@ op:
对于更灵活的进程与 GPU 卡绑定方式,会持续开发。
**四. 多种计算芯片上推理**
## 多种计算芯片上推理
除了支持 CPU、GPU 芯片推理之外,Python Pipeline 还支持在多种计算硬件上推理。根据 `config.yml` 中的 `device_type``devices`来设置推理硬件和加速库如下:
- CPU(Intel) : 0
......@@ -232,27 +359,94 @@ op:
当不设置`device_type`时,根据 `devices` 来设置,即当 `device_type` 为 "" 或空缺时为 CPU 推理;当有设定如"0,1,2"时,为 GPU 推理,并指定 GPU 卡。
以使用 GPU 的编号为0和1号卡并开启 TensorRT 为例,TensorRT 要配合 `ir_optim` 一同开启,`config.yml`详细配置如下:
以使用 XPU 的编号为0卡为例,配合 `ir_optim` 一同开启,`config.yml`详细配置如下:
```
# 计算硬件类型
device_type: 2
device_type: 4
# 计算硬件ID,优先由device_type决定硬件类型
devices: "0,1"
devices: "0"
# 开启ir优化
ir_optim: True
```
**五. 低精度推理**
Pipeline Serving支持低精度推理,CPU、GPU和TensoRT支持的精度类型如下图所示:
## TensorRT 推理加速
TensorRT 是一个高性能的深度学习推理优化器,在 Nvdia 的 GPU 硬件平台运行的推理框架,为深度学习应用提供低延迟、高吞吐率的部署推理。
通过设置`device_type``devices``ir_optim` 字段即可实现 TensorRT 高性能推理。必须同时设置 `ir_optim: True` 才能开启 TensorRT。
```
op:
imagenet:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 1
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf:
#uci模型路径
model_config: serving_server/
#计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 2
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: "1" # "0,1"
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type: local_predictor
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["score"]
#开启 ir_optim
ir_optim: True
```
## MKL-DNN 推理加速
MKL-DNN 针对 Intel CPU 和 GPU 的数学核心库,对深度学习网络进行算子和指令集的性能优化,从而提升执行速度。Paddle 框架已集成了 MKL-DNN。
目前仅支持 Intel CPU 推理加速,通过设置`device_type``devices``use_mkldnn` 字段使用 MKL-DNN。
```
op:
imagenet:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 1
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf:
#uci模型路径
model_config: serving_server/
#计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 0
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: ""
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type: local_predictor
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["score"]
#开启 MKLDNN
use_mkldnn: True
```
## 低精度推理
Pipeline Serving支持低精度推理,CPU、GPU和TensoRT支持的精度类型如下图所示:
低精度推理需要有量化模型,配合`config.yml`配置一起使用,以[低精度示例]() 为例
1. CPU 低精度推理配置
**一.CPU 低精度推理配置**
通过设置,`device_type``devices` 字段使用 CPU 推理,通过调整`precision``thread_num``use_mkldnn`参数选择低精度和性能调优。
......@@ -290,9 +484,9 @@ op:
use_mkldnn: True
```
2. GPU + TensorRT 低精度推理
**二.GPU 和 TensorRT 低精度推理**
通过设置`device_type``devices` 字段使用原生 GPU 或 TensorRT 推理,通过调整`precision``ir_optim``use_calib`参数选择低精度和性能调优,如开启 TensorRT,必须一同开启`ir_optim``use_calib`仅配合 int8 使用。
通过设置`device_type``devices` 字段使用原生 GPU 或 TensorRT 推理,通过调整`precision``ir_optim``use_calib`参数选择低精度和性能调优,如开启 TensorRT,必须一同开启`ir_optim``use_calib`仅配合 int8 使用。
```
op:
imagenet:
......@@ -327,8 +521,7 @@ op:
ir_optim: True
```
3. 性能测试
**三.性能测试**
测试环境如下:
- GPU 型号: A100-40GB
......@@ -345,7 +538,6 @@ op:
- GPU + int8 + ir_optim + TensorRT + use_calib : 15.1 ms
- GPU + fp16 + ir_optim + TensorRT : 17.2 ms
CPU 推理性能较好的配置是
- CPU + bf16 + MKLDNN : 18.2 ms
- CPU + fp32 + thread_num=10 : 18.4 ms
......@@ -354,3 +546,48 @@ CPU 推理性能较好的配置是
<div align=center>
<img src='../images/low_precision_profile.png' height = "600" align="middle"/>
</div
## 复杂图结构 DAG 跳过某个 Op 运行
此应用场景一般在 Op 前后处理中有 if 条件判断时,不满足条件时,跳过后面处理。实际做法是在跳过此 Op 的 process 阶段,只要在 preprocess 做好判断,跳过 process 阶段,在和 postprocess 后直接返回即可。
preprocess 返回结果列表的第二个结果是 `is_skip_process=True` 表示是否跳过当前 Op 的 process 阶段,直接进入 postprocess 处理。
```python
## Op::preprocess() 函数实现
def preprocess(self, input_dicts, data_id, log_id):
"""
In preprocess stage, assembling data for process stage. users can
override this function for model feed features.
Args:
input_dicts: input data to be preprocessed
data_id: inner unique id
log_id: global unique id for RTT
Return:
input_dict: data for process stage
is_skip_process: skip process stage or not, False default
prod_errcode: None default, otherwise, product errores occured.
It is handled in the same way as exception.
prod_errinfo: "" default
"""
# multiple previous Op
if len(input_dicts) != 1:
_LOGGER.critical(
self._log(
"Failed to run preprocess: this Op has multiple previous "
"inputs. Please override this func."))
os._exit(-1)
(_, input_dict), = input_dicts.items()
return input_dict, False, None, ""
```
以下示例 Jump::preprocess() 重载了原函数,返回了 True 字段
```python
class JumpOp(Op):
## Overload func JumpOp::preprocess
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
if input_dict.has_key("jump"):
return input_dict, True, None, ""
else
return input_dict, False, None, ""
```
# Python Pipeline 优化指南
通常,服务的性能优化是基于耗时分析,首先要掌握服务运行的各阶段耗时信息,从中找到耗时最长的性能瓶颈再做针对性优化。对于模型推理服务化不仅要关注耗时,由于 GPU 芯片昂贵,更要关注服务吞吐,从而提升 GPU 利用率实现降本增效。因此,模型推理服务化可总结为:
- 优化响应时长
- 优化服务吞吐
## 如何通过 Timeline 工具进行优化
经过分析和调优后,各个阶段实现整体服务的性能最优。
为了更好地对性能进行优化,Python Pipeline 提供了 Timeline 工具,对整个服务的各个阶段时间进行打点。
## 优化响应时长
## 在 Server 端输出 Profile 信息
首先,优化响应时长的主要思路首先要掌握各阶段耗时,并分析出性能瓶颈或者耗时占比较高的阶段,再针对性能瓶颈做专项优化。
Server 端用 yaml 中的 `use_profile` 字段进行控制:
Paddle Serving 提供2种耗时分析工具,`Pipeline Trace Tool``Pipeline Profile Tool`。2个工具的特点如下:
- Pipeline Trace Tool : 统计服务端所有进程各个阶段的平均耗时,包括每个 `Op``Channel`,用于定量分析。
- Pipeline Profile Tool : 是可视化 Trace View 工具,生成多进程并发效果图,用定性和定量分析执行和并发效果。
```yaml
** 一.Pipeline Trace Tool **
`Pipeline Trace Tool` 统计每个 `Op``Channel` 中各阶段的处理耗时,
开启方法在配置文件 `config.yml``dag` 区段内添加 `tracer` 字段,框架会每隔 `interval_s` 时间生成 Trace 信息。
```
dag:
use_profile: true
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: True
#tracer, 跟踪框架吞吐,每个OP和channel的工作情况。无tracer时不生成数据
tracer:
#每次trace的时间间隔,单位秒/s
interval_s: 10
```
生成的 Trace 信息保存在 `./PipelineServingLogs/pipeline.tracer` 日志中。如下图所示
```
==================== TRACER ======================
Op(uci):
in[8473.507333333333 ms]: # 等待前置 Channel 中数据放入 Op 的耗时,如长时间无请求,此值会变大
prep[0.6753333333333333 ms] # 推理前处理 preprocess 阶段耗时
midp[26.476333333333333 ms] # 推理 process 阶段耗时
postp[1.8616666666666666 ms] # 推理后处理 postprocess 阶段耗时
out[1.3236666666666668 ms] # 后处理结果放入后置 channel 耗时
idle[0.9965882097324374] # 框架自循环耗时,间隔 1 ms,如此值很大说明系统负载高,调度变慢
DAGExecutor:
Query count[30] # interval_s 间隔时间内请求数量
QPS[27.35 q/s] # interval_s 间隔时间内服务 QPS
Succ[1.0] # interval_s 间隔时间内请求成功率
Error req[] # 异常请求信息
Latency:
ave[36.55233333333334 ms] # 平均延时
.50[8.702 ms] # 50分位延时
.60[8.702 ms] # 60分位延时
.70[92.346 ms] # 70分位延时
.80[92.346 ms] # 70分位延时
.90[92.346 ms] # 90分位延时
.95[92.346 ms] # 95分位延时
.99[92.346 ms] # 99分位延时
Channel (server worker num[1]):
chl0(In: ['@DAGExecutor'], Out: ['uci']) size[0/0] # 框架 RequestOp 与 uci Op 之间 Channel 中堆积请求数。此值较大,说明下游 uci Op 消费能力不足。
chl1(In: ['uci'], Out: ['@DAGExecutor']) size[0/0] # uci Op 与 框架 ResponseOp 之间 Channel 中堆积的请求数。此值较大,说明下游 ReponseOp 消费能力不足。
==================== TRACER ======================
```
开启该功能后,Server 端在预测的过程中会将对应的日志信息打印到标准输出,为了更直观地展现各阶段的耗时,提供 Analyst 模块对日志文件做进一步的分析处理。
** 二.Pipeline Profile Tool **
使用时先将 Server 的输出保存到文件,以 `profile.txt` 为例,脚本将日志中的时间打点信息转换成 json 格式保存到 `trace` 文件,`trace` 文件可以通过 chrome 浏览器的 tracing 功能进行可视化。
```
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: True
#使用性能分析, 默认为 False,imeline性能数据,对性能有一定影响
use_profile: True,
```
开启后,Server 端在预测的过程中会将对应的日志信息打印到`标准输出`,为了更直观地展现各阶段的耗时,因此服务启动要使用如下命令:
```
python3.7 web_service.py > profile.txt 2>&1
```
```python
服务接收请求后,输出 Profile 信息到 `profile.txt` 文件中。再粘贴如下代码到 `trace.py`, 使用框架提供 Analyst 模块对日志文件做进一步的分析处理。
```
from paddle_serving_server.pipeline import Analyst
import json
import sys
......@@ -30,50 +89,88 @@ if __name__ == "__main__":
analyst.save_trace(trace_filename)
```
具体操作:打开 chrome 浏览器,在地址栏输入 `chrome://tracing/` ,跳转至 tracing 页面,点击 load 按钮,打开保存的 `trace` 文件,即可将预测服务的各阶段时间信息可视化。
运行命令,脚本将日志中的时间打点信息转换成 json 格式保存到 `trace` 文件。
```
python3.7 trace.py
```
`trace` 文件可以通过 `chrome` 浏览器的 `tracing` 功能进行可视化。
```
打开 chrome 浏览器,在地址栏输入 chrome://tracing/ ,跳转至 tracing 页面,点击 load 按钮,打开保存的 trace 文件,即可将预测服务的各阶段时间信息可视化。
```
通过图示中并发请求的处理流程可观测到推理阶段的流水线状态,以及多个请求在推理阶段的`间隔`信息,进行优化。
## 在 Client 端输出 Profile 信息
Client 端在 `predict` 接口设置 `profile=True`,即可开启 Profile 功能。
** 三. 降低响应时长优化思路 **
开启该功能后,Client 端在预测的过程中会将该次预测对应的日志信息打印到标准输出,后续分析处理同 Server。
根据 `Pipeline Trace Tool` 输出结果在不同阶段耗时长的问题,常见场景的优化方法如下:
- Op 推理阶段(midp) 耗时长:
- 增加 Op 并发度
- 开启 auto-batching (前提是多个请求的 shape 一致)
- 若批量数据中某条数据的 shape 很大,padding 很大导致推理很慢,可参考 OCR 示例中 mini-batch 方法。
- 开启 TensorRT/MKL-DNN 优化
- 开启低精度推理
- Op 前处理阶段(prep) 或 后处理阶段耗时长:
- 增加 OP 并发度
- 优化前后处理逻辑
- in/out 耗时长(channel 堆积>5)
- 检查 channel 传递的数据大小,可能为传输的数据大导致延迟大。
- 优化传入数据,不传递数据或压缩后再传入
- 增加 Op 并发度
- 减少上游 Op 并发度
## 分析方法
根据 `pipeline.tracer` 日志中的各个阶段耗时,按以下公式逐步分析出主要耗时在哪个阶段。
根据 `Pipeline Profile Tool` 输出结果优化流水行并发的效果
- 增加 Op 并发度,或调整不同 Op 的并发度
- 开启 auto-batching
此外,还有一些优化思路,如将 CPU 处理较慢的过程转换到 GPU 上处理等,客户端与服务端传输较大数据时,可使用共享内存方式传递内存或显存地址等。
## 优化服务吞吐
服务的吞吐量受到多种多因素条件制约,如 Op 处理时长、传输数据耗时、并发数和 DAG 图结构等,可以将这些因素进一步拆解,当传输数据不是极端庞大的时候,最重要因素是流水线中`最慢 Op 的处理时长和并发数`
```
单 OP 耗时
Op 处理时长
op_cost = process(pre + mid + post)
OP 期望并发数:
op_concurrency = 单OP耗时(s) * 期望QPS
服务吞吐量:
service_throughput = 1 / 最慢OP的耗时 * 并发数
service_throughput = 1 / 最慢 op_cost * 并发数
服务平响:
service_avg_cost = ∑op_concurrency 【关键路径】
Channel 堆积:
channel_acc_size = QPS(down - up) * time
批量预测平均耗时:
avg_batch_cost = (N * pre + mid + post) / N
```
## 优化思路
优化吞吐的主要方法是 `增大 Op 并发数``自动批量``CPU 与 GPU 处理分离`
根据长耗时在不同阶段,采用不同的优化方法.
- OP 推理阶段(mid-process):
- 增加 OP 并发度
- 开启 auto-batching (前提是多个请求的 shape 一致)
- 若批量数据中某条数据的 shape 很大,padding 很大导致推理很慢,可使用 mini-batch
- 开启 TensorRT/MKL-DNN 优化
- 开启低精度推理
- OP 前处理阶段(pre-process):
- 增加 OP 并发度
- 优化前处理逻辑
- in/out 耗时长(channel 堆积>5)
- 检查 channel 传递的数据大小和延迟
- 优化传入数据,不传递数据或压缩后再传入
- 增加 OP 并发度
- 减少上游 OP 并发度
**一.增加 Op 并发数**
调整 Op 的并发数量通过设置 `is_thread_op: False` 进程类型 Op 和 `uci` Op 的 `concurrency` 字段
```
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: False
op:
uci:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 10
```
Op 的进程数量不是越大越好,受到机器 CPU 核数、内存和显存大小的限制,推荐设置 Op 的并发数不超过系统 CPU 核数。
**二.自动批量**
自动配量是增加吞吐的有一种方法,开启方式可参考[Python Pipeline 核心功能](./7-2_Python_Pipeline_Senior_CN.md#批量推理)
**三.CPU 与 GPU 处理分离**
`CV` 模型中,对图片或视频的前后处理成为主要瓶颈时,可考虑此方案,即将前后处理过程独立成一个 Op 并独立设置并发度。
将 CPU 前后处理和 GPU 推理过程比例调整到服务最佳配比。以 OCR 为例,原有流水线设计为 `RequestOp -> DetOp -> RecOp -> ResponseOp`
根据耗时分析,`DetOp``RecOp` 的前处理耗时很长,因此,将2个模型前处理分离成独立 Op,最新的流水线设计为:
`RequestOp -> PreDetOp -> DetOp -> PreRecOp -> RecOp -> ResponseOp`,并调大 `PreDetOp``PreRecOp`的并发度,从而获得 20% 的性能提升。
由于增加了2次数据传递,单条请求的处理延时会增加。
本次提测的Serving版本,支持GPU预测,希望以此任务为例,对Paddle Serving支持GPU预测的性能给出测试数据。
## 测试环境
| | GPU | 显存 | CPU | 内存 |
|----------|---------|----------|----------------------------------------------|------|
| Serving端 | 4x Tesla P4-8GB | 7611MiB | Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz 48核 | 216G |
| Client端 | 4x Tesla P4-8GB | 7611MiB | Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz 48核 | 216G |
使用单卡GPU,未开启TensorRT。
模型:ResNet_v2_50
## 性能指标
|model_name |thread_num |batch_size |CPU_util(%) |GPU_memory(mb) |GPU_util(%) |qps(samples/s) |total count |mean(ms) |median(ms) |80 percent(ms) |90 percent(ms) |99 percent(ms) |total cost(s) |each cost(s)|
|:--|:--|:--|:--|:--|:--|:--|:--|:--|:--|:--|:--|:--|:--|:--
|ResNet_v2_50 |1 |1 |2.2 |3327 |17.25 |17.633658869240787 |355 |56.428481238996476 |38.646728515625 |39.496826171875 |39.98369140625 |1273.1911083984373 |20.131953477859497 |20.033540725708008|
|ResNet_v2_50 |1 |4 |2.7 |3617 |28.122 |53.50748430453522 |268 |74.71539215543378 |74.6181640625 |75.3138671875 |75.6051025390625 |77.85322998046874 |20.03458046913147 |20.024930953979492|
|ResNet_v2_50 |1 |8 |1.7 |3877 |25.7869 |59.60582783086999 |150 |133.5897119140625 |132.7503662109375 |134.968310546875 |136.470703125 |140.79039062499996 |20.132259607315063 |20.03933620452881|
|ResNet_v2_50 |1 |16 |7.0 |4777 |27.0175 |63.2627646819339 |80 |252.30162048339844 |251.8448486328125 |253.046630859375 |253.91142578125 |263.361640625 |20.233070850372314 |20.18476152420044|
|ResNet_v2_50 |1 |32 |7.5 |6567 |38.532 |62.945314687348024 |40 |506.8969482421875 |507.3531494140625 |510.562353515625 |511.421240234375 |536.8068920898437 |20.335111618041992 |20.276386737823486|
|ResNet_v2_50 |2 |1 |4.7 |6567 |49.4828 |50.40600094376044 |1010 |39.63352195815285 |39.5345458984375 |40.452880859375 |41.1375 |42.940522460937494 |20.037296772003174 |20.01696753501892|
|ResNet_v2_50 |2 |4 |2.7 |6567 |44.4744 |83.4255836891382 |420 |95.38548002697172 |95.7069091796875 |97.599951171875 |98.098583984375 |102.39680908203125 |20.137707471847534 |20.03199553489685|
|ResNet_v2_50 |2 |8 |2.2 |6567 |42.898 |91.3727510505176 |230 |174.89108568274457 |175.0452880859375 |175.82001953125 |176.7634033203125 |178.64064453125002 |20.13729453086853 |20.1132071018219|
|ResNet_v2_50 |2 |16 |2.2 |6567 |45 |97.5591285698611 |124 |327.16720088835683 |328.6126708984375 |329.75185546875 |330.386962890625 |336.86397460937496 |20.336385011672974 |20.284939169883728|
|ResNet_v2_50 |2 |32 |3.2 |6567 |59.5714 |100.70765418116333 |64 |633.9812698364258 |637.8568115234375 |648.103515625 |650.7439697265625 |659.2212915039062 |20.336090803146362 |20.28787398338318|
|ResNet_v2_50 |4 |1 |3.1 |6567 |64.3333 |80.27845081929433 |1617 |49.56464230756223 |49.4873046875 |51.5537109375 |52.693408203125 |55.207568359374996 |20.142391681671143 |20.038144528865814|
|ResNet_v2_50 |4 |4 |3.3 |6567 |70.4563 |136.62061939701394 |688 |116.51574919944586 |121.8629150390625 |129.8181640625 |133.384423828125 |142.69500732421875 |20.143372297286987 |20.041599333286285|
|ResNet_v2_50 |4 |8 |3.0 |6567 |70.896 |158.46554975132275 |399 |201.30669079926378 |210.69775390625 |228.51748046875 |236.427294921875 |252.24822753906233 |20.143179416656494 |20.081032752990723|
|ResNet_v2_50 |4 |16 |3.2 |6567 |66.3832 |156.4935247130092 |197 |407.6668608224937 |423.974609375 |450.368212890625 |464.45986328125 |482.93658203125 |20.141408443450928 |20.078101694583893|
|ResNet_v2_50 |4 |32 |3.3 |6567 |72.4791 |162.01742190796557 |104 |785.5079204852765 |813.0341796875 |887.107958984375 |909.6556640625 |935.3334838867188 |20.541000843048096 |20.423666059970856|
|ResNet_v2_50 |8 |1 |3.5 |6567 |93.977 |115.9749228558386 |2337 |68.5580409078145 |65.45849609375 |76.13930664062501 |83.542041015625 |91.45666015624998 |20.15090799331665 |20.028797417879105|
|ResNet_v2_50 |8 |4 |4.2 |6567 |90.0952 |175.58748591910316 |889 |180.7330482920592 |170.5810546875 |218.99931640625 |240.06337890625002 |254.413759765625 |20.252012729644775 |20.084695398807526|
|ResNet_v2_50 |8 |8 |2.6 |6567 |93.8693 |206.76595246418208 |526 |306.52158695119414 |303.043212890625 |321.0791015625 |350.5477294921875 |400.32452392578125 |20.351513147354126 |20.15437400341034|
|ResNet_v2_50 |8 |16 |3.2 |6567 |85.7273 |205.31850043117367 |265 |614.1745522553066 |552.372314453125 |775.89169921875 |802.022607421875 |902.2763183593761 |20.650842428207397 |20.345011442899704|
|ResNet_v2_50 |8 |32 |5.0 |6567 |89.8717 |219.8410273718835 |146 |1138.4533474020761 |1039.640869140625 |1364.289794921875 |1474.6744384765625 |1788.2614379882834 |21.251720190048218 |20.777225106954575|
|ResNet_v2_50 |12 |1 |5.0 |6567 |89.4762 |110.00858327847862 |2218 |108.50048552943953 |103.015625 |121.09404296875003 |137.1392333984375 |151.80401123046872 |20.162063121795654 |20.055511037508648|
|ResNet_v2_50 |12 |4 |4.1 |6567 |77.7619 |153.7824464757549 |779 |309.68895575507463 |285.585205078125 |378.07421875 |413.481640625 |424.70853515625 |20.262390613555908 |20.104551911354065|
|ResNet_v2_50 |12 |8 |3.6 |6567 |72.6977 |165.36021780846013 |425 |571.1991590073529 |510.995849609375 |731.9383300781251 |747.6568359375 |757.304716796875 |20.56117272377014 |20.230452219645183|
|ResNet_v2_50 |12 |16 |1.5 |6567 |76.2222 |189.6414991568285 |252 |987.7153136238219 |926.00390625 |1080.99130859375 |1249.4956298828126 |1434.4802392578124 |21.26116919517517 |20.74245794614156|
|ResNet_v2_50 |12 |32 |2.8 |6567 |84.25 |203.868228281784 |138 |1811.640237559443 |1764.2760009765625 |1855.28046875 |2023.56826171875 |2586.8038134765625 |21.66105055809021 |20.834286351998646|
|ResNet_v2_50 |16 |1 |4.8 |6567 |94.3333 |116.34927733312234 |2347 |136.7957122373642 |135.959716796875 |144.1568359375 |146.105517578125 |175.05707519531248 |20.172020435333252 |20.067057371139526|
|ResNet_v2_50 |16 |4 |15.4 |6567 |83.6364 |160.59012047270738 |822 |393.3079394412447 |396.446533203125 |426.272216796875 |429.777734375 |564.1119360351562 |20.47448492050171 |20.206754431128502|
|ResNet_v2_50 |16 |8 |6.8 |6567 |81.0233 |169.95774070621547 |437 |741.5512622684854 |751.521484375 |763.199169921875 |948.8041992187501 |1001.156142578125 |20.56981921195984 |20.254074171185493|
|ResNet_v2_50 |16 |16 |3.5 |6567 |77.8706 |186.56600081516 |248 |1332.1007946383568 |1365.2745361328125 |1399.212255859375 |1432.4037353515625 |1771.4374853515626 |21.26861262321472 |20.64799252152443|
|ResNet_v2_50 |16 |32 |4.3 |6567 |83.6371 |201.1293408638195 |140 |2419.3400198800223 |2561.09228515625 |2616.081103515625 |2642.0835205078124 |2883.8197412109366 |22.274224042892456 |21.169659316539764|
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册