提交 f35557de 编写于 作者: B barrierye

add doc: RUN_IN_DOCKER.md & RUN_IN_DOCKER_CN.md

上级 7735fbf9
# How to run PaddleServing in Docker
## Requirements
Docker (GPU version requires nvidia-docker to be installed on the GPU machine)
## CPU
### Get docker image
You can get images in two ways:
1. Pull image directly
```bash
docker pull hub.baidubce.com/ctr/paddleserving:0.1.3
```
2. Building image based on dockerfile
Create a new folder and copy [Dockerfile](../Dockerfile) to this folder, and run the following command:
```bash
docker build -t hub.baidubce.com/ctr/paddleserving:0.1.3 .
```
### Create container
```bash
docker run -p 9292:9292 --name test -dit hub.baidubce.com/ctr/paddleserving:0.1.3
docker exec -it test bash
```
The `-p` option is to map the `9292` port of the container to the `9292` port of the host.
### Install PaddleServing
In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it
```bash
pip install paddle-serving-server
```
### Test example
Get the trained Boston house price prediction model by the following command:
```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```
- Test HTTP service
Running on the Server side (inside the container):
```bash
python -m paddle_serving_server.web_serve --model uci_housing_model --thread 10 --port 9292 --name uci &>std.log 2>err.log &
```
Running on the Client side (inside or outside the container):
```bash
curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
- Test RPC service
Running on the Server side (inside the container):
```bash
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 &>std.log 2>err.log &
```
Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):
```bash
from paddle_serving_client import Client
client = Client()
client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
-0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
fetch_map = client.predict(feed={"x": data}, fetch=["price"])
print(fetch_map)
```
## GPU
The GPU version is basically the same as the CPU version, with only some differences in interface naming (GPU version requires nvidia-docker to be installed on the GPU machine).
### Get docker image
You can also get images in two ways:
1. Pull image directly
```bash
nvidia-docker pull hub.baidubce.com/ctr/paddleserving:0.1.3-gpu
```
2. Building image based on dockerfile
Create a new folder and copy [Dockerfile.gpu](../Dockerfile.gpu) to this folder, and run the following command:
```bash
nvidia-docker build -t hub.baidubce.com/ctr/paddleserving:0.1.3-gpu .
```
### Create container
```bash
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/ctr/paddleserving:0.1.3-gpu
nvidia-docker exec -it test bash
```
The `-p` option is to map the `9292` port of the container to the `9292` port of the host.
### Install PaddleServing
In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it:
```bash
pip install paddle-serving-server-gpu
```
### Test example
Get the trained Boston house price prediction model by the following command:
```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```
- Test HTTP service
Running on the Server side (inside the container):
```bash
python -m paddle_serving_server_gpu.web_serve --model uci_housing_model --thread 10 --port 9292 --name uci
```
Running on the Client side (inside or outside the container):
```bash
curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
- Test RPC service
Running on the Server side (inside the container):
```bash
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292
```
Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):
```bash
from paddle_serving_client import Client
client = Client()
client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
-0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
fetch_map = client.predict(feed={"x": data}, fetch=["price"])
print(fetch_map)
```
# 如何在Docker中运行PaddleServing
## 环境要求
Docker(GPU版本需要在GPU机器上安装nvidia-docker)
## CPU版本
### 获取镜像
可以通过两种方式获取镜像。
1. 直接拉取镜像
```bash
docker pull hub.baidubce.com/ctr/paddleserving:0.1.3
```
2. 基于Dockerfile构建镜像
建立新目录,复制[Dockerfile](../Dockerfile)内容到该目录下Dockerfile文件。执行
```bash
docker build -t hub.baidubce.com/ctr/paddleserving:0.1.3 .
```
### 创建容器并进入
```bash
docker run -p 9292:9292 --name test -dit hub.baidubce.com/ctr/paddleserving:0.1.3
docker exec -it test bash
```
`-p`选项是为了将容器的`9292`端口映射到宿主机的`9292`端口。
### 安装PaddleServing
为了减小镜像的体积,镜像中没有安装Serving包,要执行下面命令进行安装
```bash
pip install paddle-serving-server
```
### 测试example
通过下面命令获取训练好的Boston房价预估模型:
```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```
- 测试HTTP服务
在Server端(容器内)运行:
```bash
python -m paddle_serving_server.web_serve --model uci_housing_model --thread 10 --port 9292 --name uci &>std.log 2>err.log &
```
在Client端(容器内或容器外)运行:
```bash
curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
- 测试RPC服务
在Server端(容器内)运行:
```bash
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 &>std.log 2>err.log &
```
在Client端(容器内或容器外,需要安装`paddle-serving-client`包)运行下面Python代码:
```python
from paddle_serving_client import Client
client = Client()
client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
-0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
fetch_map = client.predict(feed={"x": data}, fetch=["price"])
print(fetch_map)
```
## GPU版本
GPU版本与CPU版本基本一致,只有部分接口命名的差别(GPU版本需要在GPU机器上安装nvidia-docker)。
### 获取镜像
可以通过两种方式获取镜像。
1. 直接拉取镜像
```bash
nvidia-docker pull hub.baidubce.com/ctr/paddleserving:0.1.3-gpu
```
2. 基于Dockerfile构建镜像
建立新目录,复制[Dockerfile.gpu](../Dockerfile.gpu)内容到该目录下Dockerfile文件。执行
```bash
nvidia-docker build -t hub.baidubce.com/ctr/paddleserving:0.1.3-gpu .
```
### 创建容器并进入
```bash
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/ctr/paddleserving:0.1.3-gpu
nvidia-docker exec -it test bash
```
`-p`选项是为了将容器的`9292`端口映射到宿主机的`9292`端口。
### 安装PaddleServing
为了减小镜像的体积,镜像中没有安装Serving包,要执行下面命令进行安装
```bash
pip install paddle-serving-server-gpu
```
### 测试example
通过下面命令获取训练好的Boston房价预估模型:
```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```
- 测试HTTP服务
在Server端(容器内)运行:
```bash
python -m paddle_serving_server_gpu.web_serve --model uci_housing_model --thread 10 --port 9292 --name uci
```
在Client端(容器内或容器外)运行:
```bash
curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
- 测试RPC服务
在Server端(容器内)运行:
```bash
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292
```
在Client端(容器内或容器外,需要安装`paddle-serving-client`包)运行下面Python代码:
```bash
from paddle_serving_client import Client
client = Client()
client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
-0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
fetch_map = client.predict(feed={"x": data}, fetch=["price"])
print(fetch_map)
```
FROM centos:centos6.10 FROM centos:7.3.1611
RUN yum -y install wget \
&& wget http://people.centos.org/tru/devtools-2/devtools-2.repo -O /etc/yum.repos.d/devtoolset-2.repo \
&& yum -y install devtoolset-2-gcc devtoolset-2-gcc-c++ devtoolset-2-binutils \
&& source /opt/rh/devtoolset-2/enable \
&& echo "source /opt/rh/devtoolset-2/enable" >> /etc/profile \
&& yum -y install git openssl-devel curl-devel bzip2-devel \
&& wget https://cmake.org/files/v3.5/cmake-3.5.2.tar.gz \
&& tar xvf cmake-3.5.2.tar.gz \
&& cd cmake-3.5.2 \
&& ./bootstrap --prefix=/usr \
&& make \
&& make install \
&& cd .. \
&& rm -r cmake-3.5.2* \
&& wget https://dl.google.com/go/go1.12.12.linux-amd64.tar.gz \
&& tar -xzvf go1.12.12.linux-amd64.tar.gz \
&& mv go /usr/local/go \
&& rm go1.12.12.linux-amd64.tar.gz \
&& echo "export GOROOT=/usr/local/go" >> /root/.bashrc \
&& echo "export GOPATH=$HOME/go" >> /root/.bashrc \
&& echo "export PATH=$PATH:/usr/local/go/bin" >> /root/.bashrc
RUN yum -y install wget && \
yum -y install epel-release && yum -y install patchelf && \
yum -y install gcc make python-devel && \
yum clean all && \
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
python get-pip.py && rm get-pip.py
FROM centos:7.3.1611
RUN yum -y install wget >/dev/null \
&& yum -y install gcc gcc-c++ make glibc-static which >/dev/null \
&& yum -y install git openssl-devel curl-devel bzip2-devel python-devel >/dev/null \
&& wget https://cmake.org/files/v3.2/cmake-3.2.0-Linux-x86_64.tar.gz >/dev/null \
&& tar xzf cmake-3.2.0-Linux-x86_64.tar.gz \
&& mv cmake-3.2.0-Linux-x86_64 /usr/local/cmake3.2.0 \
&& echo 'export PATH=/usr/local/cmake3.2.0/bin:$PATH' >> /root/.bashrc \
&& rm cmake-3.2.0-Linux-x86_64.tar.gz \
&& wget https://dl.google.com/go/go1.14.linux-amd64.tar.gz >/dev/null \
&& tar xzf go1.14.linux-amd64.tar.gz \
&& mv go /usr/local/go \
&& echo 'export GOROOT=/usr/local/go' >> /root/.bashrc \
&& echo 'export PATH=/usr/local/go/bin:$PATH' >> /root/.bashrc \
&& rm go1.14.linux-amd64.tar.gz \
&& yum -y install python-devel sqlite-devel >/dev/null \
&& curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py >/dev/null \
&& python get-pip.py >/dev/null \
&& pip install google protobuf setuptools wheel flask >/dev/null \
&& rm get-pip.py \
&& yum -y install epel-release && yum -y install patchelf \
&& yum clean all
FROM paddlepaddle/paddle_manylinux_devel:cuda9.0_cudnn7 FROM nvidia/cuda:9.0-cudnn7-runtime-centos7
RUN yum -y install git openssl-devel curl-devel bzip2-devel \
&& wget https://dl.google.com/go/go1.12.12.linux-amd64.tar.gz \
&& tar -xzvf go1.12.12.linux-amd64.tar.gz \
&& rm -rf /usr/local/go \
&& mv go /usr/local/go \
&& rm go1.12.12.linux-amd64.tar.gz \
&& echo "GOROOT=/usr/local/go" >> /root/.bashrc \
&& echo "GOPATH=$HOME/go" >> /root/.bashrc \
&& echo "PATH=$PATH:$GOROOT/bin" >> /root/.bashrc
RUN yum -y install wget && \
yum -y install epel-release && yum -y install patchelf && \
yum -y install gcc make python-devel && \
yum -y install libSM-1.2.2-2.el7.x86_64 --setopt=protected_multilib=false && \
yum -y install libXrender-0.9.10-1.el7.x86_64 --setopt=protected_multilib=false && \
yum -y install libXext-1.3.3-3.el7.x86_64 --setopt=protected_multilib=false && \
yum clean all && \
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
python get-pip.py && rm get-pip.py && \
ln -s /usr/local/cuda-9.0/lib64/libcublas.so.9.0 /usr/local/cuda-9.0/lib64/libcublas.so && \
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64':$LD_LIBRARY_PATH >> /root/.bashrc && \
ln -s /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudnn.so.7 /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudnn.so && \
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-9.0/targets/x86_64-linux/lib:$LD_LIBRARY_PATH' >> /root/.bashrc
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册