Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
f16d9b85
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f16d9b85
编写于
3月 03, 2020
作者:
G
guru4elephant
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine ctr example
上级
ef7c7a5a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
127 addition
and
106 deletion
+127
-106
python/examples/criteo_ctr/args.py
python/examples/criteo_ctr/args.py
+84
-79
python/examples/criteo_ctr/get_data.sh
python/examples/criteo_ctr/get_data.sh
+1
-1
python/examples/criteo_ctr/local_train.py
python/examples/criteo_ctr/local_train.py
+18
-11
python/examples/criteo_ctr/network_conf.py
python/examples/criteo_ctr/network_conf.py
+24
-15
未找到文件。
python/examples/criteo_ctr/args.py
浏览文件 @
f16d9b85
...
@@ -3,83 +3,88 @@ import argparse
...
@@ -3,83 +3,88 @@ import argparse
def
parse_args
():
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
"PaddlePaddle CTR example"
)
parser
=
argparse
.
ArgumentParser
(
description
=
"PaddlePaddle CTR example"
)
parser
.
add_argument
(
parser
.
add_argument
(
'--train_data_path'
,
'--train_data_path'
,
type
=
str
,
type
=
str
,
default
=
'./data/raw/train.txt'
,
default
=
'./data/raw/train.txt'
,
help
=
"The path of training dataset"
)
help
=
"The path of training dataset"
)
parser
.
add_argument
(
parser
.
add_argument
(
'--test_data_path'
,
'--sparse_only'
,
type
=
str
,
type
=
bool
,
default
=
'./data/raw/valid.txt'
,
default
=
False
,
help
=
"The path of testing dataset"
)
help
=
"Whether we use sparse features only"
)
parser
.
add_argument
(
parser
.
add_argument
(
'--batch_size'
,
'--test_data_path'
,
type
=
int
,
type
=
str
,
default
=
1000
,
default
=
'./data/raw/valid.txt'
,
help
=
"The size of mini-batch (default:1000)"
)
help
=
"The path of testing dataset"
)
parser
.
add_argument
(
parser
.
add_argument
(
'--embedding_size'
,
'--batch_size'
,
type
=
int
,
type
=
int
,
default
=
10
,
default
=
1000
,
help
=
"The size for embedding layer (default:10)"
)
help
=
"The size of mini-batch (default:1000)"
)
parser
.
add_argument
(
parser
.
add_argument
(
'--num_passes'
,
'--embedding_size'
,
type
=
int
,
type
=
int
,
default
=
10
,
default
=
10
,
help
=
"The number of passes to train (default: 10)"
)
help
=
"The size for embedding layer (default:10)"
)
parser
.
add_argument
(
parser
.
add_argument
(
'--model_output_dir'
,
'--num_passes'
,
type
=
str
,
type
=
int
,
default
=
'models'
,
default
=
10
,
help
=
'The path for model to store (default: models)'
)
help
=
"The number of passes to train (default: 10)"
)
parser
.
add_argument
(
parser
.
add_argument
(
'--sparse_feature_dim'
,
'--model_output_dir'
,
type
=
int
,
type
=
str
,
default
=
1000001
,
default
=
'models'
,
help
=
'sparse feature hashing space for index processing'
)
help
=
'The path for model to store (default: models)'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--is_local'
,
'--sparse_feature_dim'
,
type
=
int
,
type
=
int
,
default
=
1
,
default
=
1000001
,
help
=
'Local train or distributed train (default: 1)'
)
help
=
'sparse feature hashing space for index processing'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--cloud_train'
,
'--is_local'
,
type
=
int
,
type
=
int
,
default
=
0
,
default
=
1
,
help
=
'Local train or distributed train on paddlecloud (default: 0)'
)
help
=
'Local train or distributed train (default: 1)'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--async_mode'
,
'--cloud_train'
,
action
=
'store_true'
,
type
=
int
,
default
=
False
,
default
=
0
,
help
=
'Whether start pserver in async mode to support ASGD'
)
help
=
'Local train or distributed train on paddlecloud (default: 0)'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--no_split_var'
,
'--async_mode'
,
action
=
'store_true'
,
action
=
'store_true'
,
default
=
False
,
default
=
False
,
help
=
'Whether split variables into blocks when update_method is pserver'
)
help
=
'Whether start pserver in async mode to support ASGD'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--role'
,
'--no_split_var'
,
type
=
str
,
action
=
'store_true'
,
default
=
'pserver'
,
# trainer or pserver
default
=
False
,
help
=
'The path for model to store (default: models)'
)
help
=
'Whether split variables into blocks when update_method is pserver'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--endpoints'
,
'--role'
,
type
=
str
,
type
=
str
,
default
=
'127.0.0.1:6000'
,
default
=
'pserver'
,
# trainer or pserver
help
=
'The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001'
)
help
=
'The path for model to store (default: models)'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--current_endpoint'
,
'--endpoints'
,
type
=
str
,
type
=
str
,
default
=
'127.0.0.1:6000'
,
default
=
'127.0.0.1:6000'
,
help
=
'The path for model to store (default: 127.0.0.1:6000)'
)
help
=
'The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--trainer_id'
,
'--current_endpoint'
,
type
=
int
,
type
=
str
,
default
=
0
,
default
=
'127.0.0.1:6000'
,
help
=
'The path for model to store (default: models)'
)
help
=
'The path for model to store (default: 127.0.0.1:6000)'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--trainers'
,
'--trainer_id'
,
type
=
int
,
type
=
int
,
default
=
1
,
default
=
0
,
help
=
'The num of trianers, (default: 1)'
)
help
=
'The path for model to store (default: models)'
)
parser
.
add_argument
(
'--trainers'
,
type
=
int
,
default
=
1
,
help
=
'The num of trianers, (default: 1)'
)
return
parser
.
parse_args
()
return
parser
.
parse_args
()
python/examples/criteo_ctr/get_data.sh
浏览文件 @
f16d9b85
wget https://paddle-serving.bj.bcebos.com/data%2Fctr_prediction%2Fctr_data.tar.gz
wget https://paddle-serving.bj.bcebos.com/data%2Fctr_prediction%2Fctr_data.tar.gz
tar
-zxvf
ctr_data.tar.gz
tar
-zxvf
*
ctr_data.tar.gz
python/examples/criteo_ctr/local_train.py
浏览文件 @
f16d9b85
...
@@ -4,15 +4,16 @@ from args import parse_args
...
@@ -4,15 +4,16 @@ from args import parse_args
import
os
import
os
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
sys
import
sys
from
network_conf
import
ctr_dnn_model_dataset
from
network_conf
import
dnn_model
dense_feature_dim
=
13
dense_feature_dim
=
13
def
train
():
def
train
():
args
=
parse_args
()
args
=
parse_args
()
sparse_only
=
args
.
sparse_only
if
not
os
.
path
.
isdir
(
args
.
model_output_dir
):
if
not
os
.
path
.
isdir
(
args
.
model_output_dir
):
os
.
mkdir
(
args
.
model_output_dir
)
os
.
mkdir
(
args
.
model_output_dir
)
dense_input
=
fluid
.
layers
.
data
(
dense_input
=
fluid
.
layers
.
data
(
name
=
"dense_input"
,
shape
=
[
dense_feature_dim
],
dtype
=
'float32'
)
name
=
"dense_input"
,
shape
=
[
dense_feature_dim
],
dtype
=
'float32'
)
sparse_input_ids
=
[
sparse_input_ids
=
[
...
@@ -20,8 +21,10 @@ def train():
...
@@ -20,8 +21,10 @@ def train():
for
i
in
range
(
1
,
27
)]
for
i
in
range
(
1
,
27
)]
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict_y
,
loss
,
auc_var
,
batch_auc_var
=
ctr_dnn_model_dataset
(
#nn_input = None if sparse_only else dense_input
dense_input
,
sparse_input_ids
,
label
,
nn_input
=
dense_input
predict_y
,
loss
,
auc_var
,
batch_auc_var
=
dnn_model
(
nn_input
,
sparse_input_ids
,
label
,
args
.
embedding_size
,
args
.
sparse_feature_dim
)
args
.
embedding_size
,
args
.
sparse_feature_dim
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-4
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-4
)
...
@@ -31,29 +34,33 @@ def train():
...
@@ -31,29 +34,33 @@ def train():
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
dataset
=
fluid
.
DatasetFactory
().
create_dataset
(
"InMemoryDataset"
)
dataset
=
fluid
.
DatasetFactory
().
create_dataset
(
"InMemoryDataset"
)
dataset
.
set_use_var
([
dense_input
]
+
sparse_input_ids
+
[
label
])
dataset
.
set_use_var
([
dense_input
]
+
sparse_input_ids
+
[
label
])
python_executable
=
"python"
python_executable
=
"python"
pipe_command
=
"{} criteo_reader.py {}"
.
format
(
python_executable
,
args
.
sparse_feature_dim
)
pipe_command
=
"{} criteo_reader.py {}"
.
format
(
python_executable
,
args
.
sparse_feature_dim
)
dataset
.
set_pipe_command
(
pipe_command
)
dataset
.
set_pipe_command
(
pipe_command
)
dataset
.
set_batch_size
(
128
)
dataset
.
set_batch_size
(
128
)
thread_num
=
10
thread_num
=
10
dataset
.
set_thread
(
thread_num
)
dataset
.
set_thread
(
thread_num
)
whole_filelist
=
[
"raw_data/part-%d"
%
x
for
x
in
range
(
len
(
os
.
listdir
(
"raw_data"
)))]
#dataset.set_filelist(whole_filelist[:(len(whole_filelist)-thread_num)])
whole_filelist
=
[
"raw_data/part-%d"
%
x
for
x
in
range
(
len
(
os
.
listdir
(
"raw_data"
)))]
dataset
.
set_filelist
(
whole_filelist
[:
thread_num
])
dataset
.
set_filelist
(
whole_filelist
[:
thread_num
])
dataset
.
load_into_memory
()
dataset
.
load_into_memory
()
epochs
=
1
epochs
=
1
for
i
in
range
(
epochs
):
for
i
in
range
(
epochs
):
exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
exe
.
train_from_dataset
(
dataset
=
dataset
,
program
=
fluid
.
default_main_program
()
,
debug
=
True
)
dataset
=
dataset
,
debug
=
True
)
print
(
"epoch {} finished"
.
format
(
i
))
print
(
"epoch {} finished"
.
format
(
i
))
import
paddle_serving_client.io
as
server_io
import
paddle_serving_client.io
as
server_io
feed_var_dict
=
{}
feed_var_dict
=
{}
for
i
,
sparse
in
enumerate
(
sparse_input_ids
):
for
i
,
sparse
in
enumerate
(
sparse_input_ids
):
feed_var_dict
[
"sparse_{}"
.
format
(
i
)]
=
sparse
feed_var_dict
[
"sparse_{}"
.
format
(
i
)]
=
sparse
feed_var_dict
[
"dense_0"
]
=
dense_input
fetch_var_dict
=
{
"prob"
:
predict_y
}
fetch_var_dict
=
{
"prob"
:
predict_y
}
server_io
.
save_model
(
server_io
.
save_model
(
...
...
python/examples/criteo_ctr/network_conf.py
浏览文件 @
f16d9b85
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
math
import
math
dense_feature_dim
=
13
def
dnn_model
(
dense_input
,
sparse_inputs
,
label
,
embedding_size
,
sparse_feature_dim
):
def
ctr_dnn_model_dataset
(
dense_input
,
sparse_inputs
,
label
,
embedding_size
,
sparse_feature_dim
):
def
embedding_layer
(
input
):
def
embedding_layer
(
input
):
emb
=
fluid
.
layers
.
embedding
(
emb
=
fluid
.
layers
.
embedding
(
input
=
input
,
input
=
input
,
...
@@ -15,20 +14,30 @@ def ctr_dnn_model_dataset(dense_input, sparse_inputs, label,
...
@@ -15,20 +14,30 @@ def ctr_dnn_model_dataset(dense_input, sparse_inputs, label,
initializer
=
fluid
.
initializer
.
Uniform
()))
initializer
=
fluid
.
initializer
.
Uniform
()))
return
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
return
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
sparse_embed_seq
=
list
(
map
(
embedding_layer
,
sparse_inputs
))
def
mlp_input_tensor
(
emb_sums
,
dense_tensor
):
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
,
axis
=
1
)
if
isinstance
(
dense_tensor
,
fluid
.
Variable
):
fc1
=
fluid
.
layers
.
fc
(
input
=
concated
,
size
=
400
,
act
=
'relu'
,
return
fluid
.
layers
.
concat
(
emb_sums
,
axis
=
1
)
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
else
:
scale
=
1
/
math
.
sqrt
(
concated
.
shape
[
1
]))))
return
fluid
.
layers
.
concat
(
emb_sums
+
[
dense_tensor
],
axis
=
1
)
fc2
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
400
,
act
=
'relu'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
def
mlp
(
mlp_input
):
scale
=
1
/
math
.
sqrt
(
fc1
.
shape
[
1
]))))
fc1
=
fluid
.
layers
.
fc
(
input
=
mlp_input
,
size
=
400
,
act
=
'relu'
,
fc3
=
fluid
.
layers
.
fc
(
input
=
fc2
,
size
=
400
,
act
=
'relu'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
mlp_input
.
shape
[
1
]))))
scale
=
1
/
math
.
sqrt
(
fc2
.
shape
[
1
]))))
fc2
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
400
,
act
=
'relu'
,
predict
=
fluid
.
layers
.
fc
(
input
=
fc3
,
size
=
2
,
act
=
'softmax'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
fc1
.
shape
[
1
]))))
fc3
=
fluid
.
layers
.
fc
(
input
=
fc2
,
size
=
400
,
act
=
'relu'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
fc2
.
shape
[
1
]))))
pre
=
fluid
.
layers
.
fc
(
input
=
fc3
,
size
=
2
,
act
=
'softmax'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
fc3
.
shape
[
1
]))))
scale
=
1
/
math
.
sqrt
(
fc3
.
shape
[
1
]))))
return
pre
emb_sums
=
list
(
map
(
embedding_layer
,
sparse_inputs
))
mlp_in
=
mlp_input_tensor
(
emb_sums
,
dense_input
)
predict
=
mlp
(
mlp_in
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录