Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
f00034fb
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f00034fb
编写于
7月 29, 2019
作者:
W
wangguibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
CTR prediction serving
上级
05266a5f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
110 addition
and
19 deletion
+110
-19
demo-serving/op/ctr_prediction_op.cpp
demo-serving/op/ctr_prediction_op.cpp
+104
-18
demo-serving/proto/CMakeLists.txt
demo-serving/proto/CMakeLists.txt
+1
-0
demo-serving/proto/ctr_prediction.proto
demo-serving/proto/ctr_prediction.proto
+5
-1
未找到文件。
demo-serving/op/ctr_prediction_op.cpp
浏览文件 @
f00034fb
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#include "demo-serving/op/ctr_prediction_op.h"
#include "demo-serving/op/ctr_prediction_op.h"
#include <algorithm>
#include <algorithm>
#include <string>
#include "predictor/framework/infer.h"
#include "predictor/framework/infer.h"
#include "predictor/framework/memory.h"
#include "predictor/framework/memory.h"
...
@@ -27,31 +28,94 @@ using baidu::paddle_serving::predictor::ctr_prediction::Response;
...
@@ -27,31 +28,94 @@ using baidu::paddle_serving::predictor::ctr_prediction::Response;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
CTRReqInstance
;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
CTRReqInstance
;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
Request
;
const
int
CTR_PREDICTION_INPUT_SLOTS
=
// Total 26 sparse input + 1 dense input
27
;
// Total 26 sparse input + 1 dense input
const
int
CTR_PREDICTION_INPUT_SLOTS
=
27
;
const
int
CTR_PREDICTION_SPARSE_SLOTS
=
26
;
// First 26: sparse input
const
int
CTR_PREDICTION_DENSE_SLOT
=
26
;
// Last 1: dense input
// First 26: sparse input
const
int
CTR_PREDICTION_SPARSE_SLOTS
=
26
;
// Last 1: dense input
const
int
CTR_PREDICTION_DENSE_SLOT_ID
=
26
;
const
int
CTR_PREDICTION_DENSE_DIM
=
13
;
const
int
CTR_PREDICTION_EMBEDDING_SIZE
=
10
;
#if 1
struct
CubeValue
{
int
error
;
std
::
string
buff
;
};
#endif
void
fill_response_with_message
(
Response
*
response
,
int
err_code
,
std
::
string
err_msg
)
{
if
(
response
==
NULL
)
{
LOG
(
ERROR
)
<<
"response is NULL"
;
return
;
}
response
->
set_err_code
(
err_code
);
response
->
set_err_msg
(
err_msg
);
return
;
}
int
CTRPredictionOp
::
inference
()
{
int
CTRPredictionOp
::
inference
()
{
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
TensorVector
*
in
=
butil
::
get_object
<
TensorVector
>
();
TensorVector
*
in
=
butil
::
get_object
<
TensorVector
>
();
Response
*
res
=
mutable_data
<
Response
>
();
uint32_t
sample_size
=
req
->
instances_size
();
uint32_t
sample_size
=
req
->
instances_size
();
if
(
sample_size
<=
0
)
{
if
(
sample_size
<=
0
)
{
LOG
(
WARNING
)
<<
"No instances need to inference!"
;
LOG
(
WARNING
)
<<
"No instances need to inference!"
;
fill_response_with_message
(
res
,
-
1
,
"Sample size invalid"
);
return
-
1
;
return
-
1
;
}
}
paddle
::
PaddleTensor
lod_tensors
[
CTR_PREDICTION_INPUT_SLOTS
];
paddle
::
PaddleTensor
lod_tensors
[
CTR_PREDICTION_INPUT_SLOTS
];
for
(
int
i
=
0
;
i
<
CTR_PREDICTION_
INPUT
_SLOTS
;
++
i
)
{
for
(
int
i
=
0
;
i
<
CTR_PREDICTION_
SPARSE
_SLOTS
;
++
i
)
{
lod_tensors
[
i
].
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
lod_tensors
[
i
].
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
std
::
vector
<
std
::
vector
<
size_t
>>
&
lod
=
lod_tensors
[
i
].
lod
;
std
::
vector
<
std
::
vector
<
size_t
>>
&
lod
=
lod_tensors
[
i
].
lod
;
lod
.
resize
(
1
);
lod
.
resize
(
1
);
lod
[
0
].
push_back
(
0
);
lod
[
0
].
push_back
(
0
);
}
}
lot_tensors
[
CTR_PREDICTION_SPARSE_SLOTS
].
dtype
=
paddle
::
PaddleDType
::
INT64
;
// Query cube API for sparse embeddings
std
::
vector
<
int64_t
>
keys
;
std
::
vector
<
CubeValue
>
values
;
for
(
uint32_t
si
=
0
;
si
<
sample_size
;
++
si
)
{
const
CTRReqInstance
&
req_instance
=
req
->
instances
(
si
);
if
(
req_instance
.
sparse_ids_size
()
!=
CTR_PREDICTION_DENSE_DIM
)
{
std
::
ostringstream
iss
;
iss
<<
"dense input size != "
<<
CTR_PREDICTION_DENSE_DIM
;
fill_response_with_message
(
res
,
-
1
,
iss
.
str
());
return
-
1
;
}
for
(
int
i
=
0
;
i
<
req_instance
.
sparse_ids_size
();
++
i
)
{
keys
.
push_back
(
req_instance
.
sparse_ids
(
i
));
}
}
#if 0
mCube::CubeAPI* cube = CubeAPI::instance();
int ret = cube->seek(keys, values);
if (ret != 0) {
fill_response_with_message(res, -1, "Query cube for embeddings error");
LOG(ERROR) << "Query cube for embeddings error";
return -1;
}
#else
float
buff
[
CTR_PREDICTION_EMBEDDING_SIZE
]
=
{
0.01
,
0.02
,
0.03
,
0.04
,
0.05
,
0.06
,
0.07
,
0.08
,
0.09
,
0.00
};
for
(
int
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
values
[
i
].
error
=
0
;
values
[
i
].
buff
=
std
::
string
(
reinterpret_cast
<
char
*>
(
buff
),
sizeof
(
buff
));
}
#endif
// Sparse embeddings
for
(
int
i
=
0
;
i
<
CTR_PREDICTION_SPARSE_SLOTS
;
++
i
)
{
for
(
int
i
=
0
;
i
<
CTR_PREDICTION_SPARSE_SLOTS
;
++
i
)
{
paddle
::
PaddleTensor
lod_tensor
=
lod_tensors
[
i
];
paddle
::
PaddleTensor
lod_tensor
=
lod_tensors
[
i
];
std
::
vector
<
std
::
vector
<
size_t
>>
&
lod
=
lod_tensor
.
lod
;
std
::
vector
<
std
::
vector
<
size_t
>>
&
lod
=
lod_tensor
.
lod
;
...
@@ -61,31 +125,48 @@ int CTRPredictionOp::inference() {
...
@@ -61,31 +125,48 @@ int CTRPredictionOp::inference() {
lod
[
0
].
push_back
(
lod
[
0
].
back
()
+
1
);
lod
[
0
].
push_back
(
lod
[
0
].
back
()
+
1
);
}
}
lod_tensor
.
shape
=
{
lod
[
0
].
back
(),
1
};
lod_tensor
.
shape
=
{
lod
[
0
].
back
(),
CTR_PREDICTION_EMBEDDING_SIZE
};
lod_tensor
.
data
.
Resize
(
lod
[
0
].
back
()
*
sizeof
(
int64_t
));
lod_tensor
.
data
.
Resize
(
lod
[
0
].
back
()
*
sizeof
(
float
)
*
CTR_PREDICTION_EMBEDDING_SIZE
);
int
offset
=
0
;
int
offset
=
0
;
for
(
uint32_t
si
=
0
;
si
<
sample_size
;
++
si
)
{
for
(
uint32_t
si
=
0
;
si
<
sample_size
;
++
si
)
{
int64_t
*
data_ptr
=
float
*
data_ptr
=
static_cast
<
float
*>
(
lod_tensor
.
data
.
data
())
+
offset
;
static_cast
<
int64_t
*>
(
lod_tensor
.
data
.
data
())
+
offset
;
const
CTRReqInstance
&
req_instance
=
req
->
instances
(
si
);
const
CTRReqInstance
&
req_instance
=
req
->
instances
(
si
);
int
id_count
=
1
;
memcpy
(
data_ptr
,
&
req_instance
.
sparse_ids
().
data
()[
i
],
sizeof
(
int64_t
));
int
idx
=
si
*
CTR_PREDICTION_SPARSE_SLOTS
+
i
;
offset
+=
1
;
if
(
values
[
idx
].
buff
.
size
()
!=
sizeof
(
float
)
*
CTR_PREDICTION_EMBEDDING_SIZE
)
{
LOG
(
ERROR
)
<<
"Embedding vector size not expected"
;
fill_response_with_message
(
res
,
-
1
,
"Embedding vector size not expected"
);
return
-
1
;
}
memcpy
(
data_ptr
,
values
[
idx
].
buff
.
data
(),
values
[
idx
].
buff
.
size
());
offset
+=
CTR_PREDICTION_EMBEDDING_SIZE
;
}
}
in
->
push_back
(
lod_tensor
);
in
->
push_back
(
lod_tensor
);
}
}
paddle
::
PaddleTensor
lod_tensor
=
lod_tensors
[
CTR_PREDICTION_DENSE_SLOT
];
// Dense features
paddle
::
PaddleTensor
lod_tensor
=
lod_tensors
[
CTR_PREDICTION_DENSE_SLOT_ID
];
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
INT64
;
std
::
vector
<
std
::
vector
<
size_t
>>
&
lod
=
lod_tensor
.
lod
;
std
::
vector
<
std
::
vector
<
size_t
>>
&
lod
=
lod_tensor
.
lod
;
for
(
uint32_t
si
=
0
;
si
<
sample_size
;
++
si
)
{
for
(
uint32_t
si
=
0
;
si
<
sample_size
;
++
si
)
{
const
CTRReqInstance
&
req_instance
=
req
->
instances
(
si
);
const
CTRReqInstance
&
req_instance
=
req
->
instances
(
si
);
if
(
req_instance
.
dense_ids_size
()
!=
CTR_PREDICTION_DENSE_DIM
)
{
std
::
ostringstream
iss
;
iss
<<
"dense input size != "
<<
CTR_PREDICTION_DENSE_DIM
;
fill_response_with_message
(
res
,
-
1
,
iss
.
str
());
return
-
1
;
}
lod
[
0
].
push_back
(
lod
[
0
].
back
()
+
req_instance
.
dense_ids_size
());
lod
[
0
].
push_back
(
lod
[
0
].
back
()
+
req_instance
.
dense_ids_size
());
}
}
lod_tensor
.
shape
=
{
lod
[
0
].
back
(),
1
};
lod_tensor
.
shape
=
{
lod
[
0
].
back
(),
CTR_PREDICTION_DENSE_DIM
};
lod_tensor
.
data
.
Resize
(
lod
[
0
].
back
()
*
sizeof
(
int64_t
));
lod_tensor
.
data
.
Resize
(
lod
[
0
].
back
()
*
sizeof
(
int64_t
));
int
offset
=
0
;
int
offset
=
0
;
...
@@ -94,7 +175,7 @@ int CTRPredictionOp::inference() {
...
@@ -94,7 +175,7 @@ int CTRPredictionOp::inference() {
const
CTRReqInstance
&
req_instance
=
req
->
instances
(
si
);
const
CTRReqInstance
&
req_instance
=
req
->
instances
(
si
);
int
id_count
=
req_instance
.
dense_ids_size
();
int
id_count
=
req_instance
.
dense_ids_size
();
memcpy
(
data_ptr
,
memcpy
(
data_ptr
,
req_instance
.
ids
().
data
(),
req_instance
.
dense_
ids
().
data
(),
sizeof
(
int64_t
)
*
req_instance
.
dense_ids_size
());
sizeof
(
int64_t
)
*
req_instance
.
dense_ids_size
());
offset
+=
req_instance
.
dense_ids_size
();
offset
+=
req_instance
.
dense_ids_size
();
}
}
...
@@ -104,6 +185,7 @@ int CTRPredictionOp::inference() {
...
@@ -104,6 +185,7 @@ int CTRPredictionOp::inference() {
TensorVector
*
out
=
butil
::
get_object
<
TensorVector
>
();
TensorVector
*
out
=
butil
::
get_object
<
TensorVector
>
();
if
(
!
out
)
{
if
(
!
out
)
{
LOG
(
ERROR
)
<<
"Failed get tls output object"
;
LOG
(
ERROR
)
<<
"Failed get tls output object"
;
fill_response_with_message
(
res
,
-
1
,
"Failed get thread local resource"
);
return
-
1
;
return
-
1
;
}
}
...
@@ -112,22 +194,23 @@ int CTRPredictionOp::inference() {
...
@@ -112,22 +194,23 @@ int CTRPredictionOp::inference() {
CTR_PREDICTION_MODEL_NAME
,
in
,
out
,
sample_size
))
{
CTR_PREDICTION_MODEL_NAME
,
in
,
out
,
sample_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
CTR_PREDICTION_MODEL_NAME
;
<<
CTR_PREDICTION_MODEL_NAME
;
fill_response_with_message
(
res
,
-
1
,
"Failed do infer in fluid model"
);
return
-
1
;
return
-
1
;
}
}
if
(
out
->
size
()
!=
in
->
size
())
{
if
(
out
->
size
()
!=
in
->
size
())
{
LOG
(
ERROR
)
<<
"Output tensor size not equal that of input"
;
LOG
(
ERROR
)
<<
"Output tensor size not equal that of input"
;
fill_response_with_message
(
res
,
-
1
,
"Output size != input size"
);
return
-
1
;
return
-
1
;
}
}
Response
*
res
=
mutable_data
<
Response
>
();
for
(
size_t
i
=
0
;
i
<
out
->
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
out
->
size
();
++
i
)
{
int
dim1
=
out
->
at
(
i
).
shape
[
0
];
int
dim1
=
out
->
at
(
i
).
shape
[
0
];
int
dim2
=
out
->
at
(
i
).
shape
[
1
];
int
dim2
=
out
->
at
(
i
).
shape
[
1
];
if
(
out
->
at
(
i
).
dtype
!=
paddle
::
PaddleDType
::
FLOAT32
)
{
if
(
out
->
at
(
i
).
dtype
!=
paddle
::
PaddleDType
::
FLOAT32
)
{
LOG
(
ERROR
)
<<
"Expected data type float"
;
LOG
(
ERROR
)
<<
"Expected data type float"
;
fill_response_with_message
(
res
,
-
1
,
"Expected data type float"
);
return
-
1
;
return
-
1
;
}
}
...
@@ -150,6 +233,9 @@ int CTRPredictionOp::inference() {
...
@@ -150,6 +233,9 @@ int CTRPredictionOp::inference() {
}
}
out
->
clear
();
out
->
clear
();
butil
::
return_object
<
TensorVector
>
(
out
);
butil
::
return_object
<
TensorVector
>
(
out
);
res
->
set_err_code
(
0
);
res
->
set_err_msg
(
std
::
string
(
""
));
return
0
;
return
0
;
}
}
...
...
demo-serving/proto/CMakeLists.txt
浏览文件 @
f00034fb
...
@@ -6,6 +6,7 @@ LIST(APPEND protofiles
...
@@ -6,6 +6,7 @@ LIST(APPEND protofiles
${
CMAKE_CURRENT_LIST_DIR
}
/echo_kvdb_service.proto
${
CMAKE_CURRENT_LIST_DIR
}
/echo_kvdb_service.proto
${
CMAKE_CURRENT_LIST_DIR
}
/int64tensor_service.proto
${
CMAKE_CURRENT_LIST_DIR
}
/int64tensor_service.proto
${
CMAKE_CURRENT_LIST_DIR
}
/text_classification.proto
${
CMAKE_CURRENT_LIST_DIR
}
/text_classification.proto
${
CMAKE_CURRENT_LIST_DIR
}
/ctr_prediction.proto
)
)
PROTOBUF_GENERATE_SERVING_CPP
(
TRUE PROTO_SRCS PROTO_HDRS
${
protofiles
}
)
PROTOBUF_GENERATE_SERVING_CPP
(
TRUE PROTO_SRCS PROTO_HDRS
${
protofiles
}
)
...
...
demo-serving/proto/ctr_prediction.proto
浏览文件 @
f00034fb
...
@@ -31,7 +31,11 @@ message CTRResInstance {
...
@@ -31,7 +31,11 @@ message CTRResInstance {
required
float
prob1
=
2
;
required
float
prob1
=
2
;
};
};
message
Response
{
repeated
CTRResInstance
predictions
=
1
;
};
message
Response
{
repeated
CTRResInstance
predictions
=
1
;
required
int64
err_code
=
2
;
optional
string
err_msg
=
3
;
};
service
CTRPredictionService
{
service
CTRPredictionService
{
rpc
inference
(
Request
)
returns
(
Response
);
rpc
inference
(
Request
)
returns
(
Response
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录