Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
edf0f601
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
edf0f601
编写于
5月 28, 2021
作者:
B
bjjwwang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'uni_benchmark' of
https://github.com/bjjwwang/serving
into uni_benchmark
上级
c1910f91
33d0456c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
159 addition
and
39 deletion
+159
-39
python/examples/pipeline/ocr/benchmark.sh
python/examples/pipeline/ocr/benchmark.sh
+4
-4
python/examples/pipeline/ocr/config.yml
python/examples/pipeline/ocr/config.yml
+23
-5
python/examples/pipeline/simple_web_service/config.yml
python/examples/pipeline/simple_web_service/config.yml
+11
-4
python/paddle_serving_app/local_predict.py
python/paddle_serving_app/local_predict.py
+39
-12
python/pipeline/local_service_handler.py
python/pipeline/local_service_handler.py
+31
-7
python/pipeline/operator.py
python/pipeline/operator.py
+43
-7
python/pipeline/pipeline_server.py
python/pipeline/pipeline_server.py
+8
-0
未找到文件。
python/examples/pipeline/ocr/benchmark.sh
浏览文件 @
edf0f601
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.
6
"
alias
python3
=
"python3.
7
"
modelname
=
"ocr"
# HTTP
...
...
@@ -11,11 +11,11 @@ rm -rf profile_log_$modelname
echo
"Starting HTTP Clients..."
# Start a client in each thread, tesing the case of multiple threads.
for
thread_num
in
1 2 4 8 12 16
for
thread_num
in
1 2 4
6
8 12 16
do
for
batch_size
in
1
do
echo
'----$modelname thread num: $thread_num batch size: $batch_size mode:http ----'
>>
profile_log_
$modelname
echo
"----
$modelname
thread num:
$thread_num
batch size:
$batch_size
mode:http ----"
>>
profile_log_
$modelname
# Start one web service, If you start the service yourself, you can ignore it here.
#python3 web_service.py >web.log 2>&1 &
#sleep 3
...
...
@@ -51,7 +51,7 @@ sleep 3
# Create yaml,If you already have the config.yaml, ignore it.
#python3 benchmark.py yaml local_predictor 1 gpu
rm
-rf
profile_log_
$modelname
#
rm -rf profile_log_$modelname
# Start a client in each thread, tesing the case of multiple threads.
for
thread_num
in
1 2 4 6 8 12 16
...
...
python/examples/pipeline/ocr/config.yml
浏览文件 @
edf0f601
...
...
@@ -6,7 +6,7 @@ http_port: 9999
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num
:
5
worker_num
:
20
#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG
build_dag_each_worker
:
false
...
...
@@ -26,7 +26,7 @@ dag:
op
:
det
:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
2
concurrency
:
6
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf
:
...
...
@@ -40,10 +40,19 @@ op:
fetch_list
:
[
"
concat_1.tmp_0"
]
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices
:
"
0"
devices
:
"
"
#use_mkldnn
#use_mkldnn: True
#thread_num
thread_num
:
2
#ir_optim
ir_optim
:
True
rec
:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
2
concurrency
:
3
#超时时间, 单位ms
timeout
:
-1
...
...
@@ -64,4 +73,13 @@ op:
fetch_list
:
[
"
ctc_greedy_decoder_0.tmp_0"
,
"
softmax_0.tmp_0"
]
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices
:
"
0"
devices
:
"
"
#use_mkldnn
#use_mkldnn: True
#thread_num
thread_num
:
2
#ir_optim
ir_optim
:
True
python/examples/pipeline/simple_web_service/config.yml
浏览文件 @
edf0f601
...
...
@@ -9,10 +9,14 @@ http_port: 18082
dag
:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op
:
False
#tracer
tracer
:
interval_s
:
10
op
:
uci
:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
2
concurrency
:
1
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf
:
...
...
@@ -35,7 +39,10 @@ op:
#precsion, 预测精度,降低预测精度可提升预测速度
#GPU 支持: "fp32"(default), "fp16", "int8";
#CPU 支持: "fp32"(default), "fp16", "bf16"(mkldnn); 不支持: "int8"
precision
:
"
FP16"
precision
:
"
fp32"
#ir_optim开关, 默认False
ir_optim
:
True
#
ir_optim开关
ir_optim
:
False
#
use_mkldnn开关, 默认False, use_mkldnn与ir_optim同时打开才有性能提升
use_mkldnn
:
True
python/paddle_serving_app/local_predict.py
浏览文件 @
edf0f601
...
...
@@ -64,6 +64,10 @@ class LocalPredictor(object):
use_xpu
=
False
,
precision
=
"fp32"
,
use_calib
=
False
,
use_mkldnn
=
False
,
mkldnn_cache_capacity
=
0
,
mkldnn_op_list
=
None
,
mkldnn_bf16_op_list
=
None
,
use_feed_fetch_ops
=
False
):
"""
Load model configs and create the paddle predictor by Paddle Inference API.
...
...
@@ -73,7 +77,7 @@ class LocalPredictor(object):
use_gpu: calculating with gpu, False default.
gpu_id: gpu id, 0 default.
use_profile: use predictor profiles, False default.
thread_num: thread nums, default 1.
thread_num: thread nums
of cpu math library
, default 1.
mem_optim: memory optimization, True default.
ir_optim: open calculation chart optimization, False default.
use_trt: use nvidia TensorRT optimization, False default
...
...
@@ -81,6 +85,10 @@ class LocalPredictor(object):
use_xpu: run predict on Baidu Kunlun, False default
precision: precision mode, "fp32" default
use_calib: use TensorRT calibration, False default
use_mkldnn: use MKLDNN, False default.
mkldnn_cache_capacity: cache capacity for input shapes, 0 default.
mkldnn_op_list: op list accelerated using MKLDNN, None default.
mkldnn_bf16_op_list: op list accelerated using MKLDNN bf16, None default.
use_feed_fetch_ops: use feed/fetch ops, False default.
"""
client_config
=
"{}/serving_server_conf.prototxt"
.
format
(
model_path
)
...
...
@@ -96,13 +104,15 @@ class LocalPredictor(object):
config
=
paddle_infer
.
Config
(
model_path
)
logger
.
info
(
"LocalPredictor load_model_config params: model_path:{}, use_gpu:{},
\
gpu_id:{}, use_profile:{}, thread_num:{}, mem_optim:{}, ir_optim:{},
\
use_trt:{}, use_lite:{}, use_xpu: {}, precision: {}, use_calib: {},
\
use_feed_fetch_ops:{}"
.
format
(
model_path
,
use_gpu
,
gpu_id
,
use_profile
,
thread_num
,
mem_optim
,
ir_optim
,
use_trt
,
use_lite
,
use_xpu
,
precision
,
use_calib
,
use_feed_fetch_ops
))
"LocalPredictor load_model_config params: model_path:{}, use_gpu:{}, "
"gpu_id:{}, use_profile:{}, thread_num:{}, mem_optim:{}, ir_optim:{}, "
"use_trt:{}, use_lite:{}, use_xpu:{}, precision:{}, use_calib:{}, "
"use_mkldnn:{}, mkldnn_cache_capacity:{}, mkldnn_op_list:{}, "
"mkldnn_bf16_op_list:{}, use_feed_fetch_ops:{}, "
.
format
(
model_path
,
use_gpu
,
gpu_id
,
use_profile
,
thread_num
,
mem_optim
,
ir_optim
,
use_trt
,
use_lite
,
use_xpu
,
precision
,
use_calib
,
use_mkldnn
,
mkldnn_cache_capacity
,
mkldnn_op_list
,
mkldnn_bf16_op_list
,
use_feed_fetch_ops
))
self
.
feed_names_
=
[
var
.
alias_name
for
var
in
model_conf
.
feed_var
]
self
.
fetch_names_
=
[
var
.
alias_name
for
var
in
model_conf
.
fetch_var
]
...
...
@@ -118,21 +128,35 @@ class LocalPredictor(object):
self
.
fetch_names_to_idx_
[
var
.
alias_name
]
=
i
self
.
fetch_names_to_type_
[
var
.
alias_name
]
=
var
.
fetch_type
# set precision of inference.
precision_type
=
paddle_infer
.
PrecisionType
.
Float32
if
precision
is
not
None
and
precision
.
lower
()
in
precision_map
:
precision_type
=
precision_map
[
precision
.
lower
()]
else
:
logger
.
warning
(
"precision error!!! Please check precision:{}"
.
format
(
precision
))
# set profile
if
use_profile
:
config
.
enable_profile
()
# set memory optimization
if
mem_optim
:
config
.
enable_memory_optim
()
# set ir optimization, threads of cpu math library
config
.
switch_ir_optim
(
ir_optim
)
config
.
set_cpu_math_library_num_threads
(
thread_num
)
# use feed & fetch ops
config
.
switch_use_feed_fetch_ops
(
use_feed_fetch_ops
)
# pass optim
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
# set cpu & mkldnn
config
.
set_cpu_math_library_num_threads
(
thread_num
)
if
use_mkldnn
:
config
.
enable_mkldnn
()
if
mkldnn_cache_capacity
>
0
:
config
.
set_mkldnn_cache_capacity
(
mkldnn_cache_capacity
)
if
mkldnn_op_list
is
not
None
:
config
.
set_mkldnn_op
(
mkldnn_op_list
)
# set gpu
if
not
use_gpu
:
config
.
disable_gpu
()
else
:
...
...
@@ -145,18 +169,18 @@ class LocalPredictor(object):
min_subgraph_size
=
3
,
use_static
=
False
,
use_calib_mode
=
False
)
# set lite
if
use_lite
:
config
.
enable_lite_engine
(
precision_mode
=
precision_type
,
zero_copy
=
True
,
passes_filter
=
[],
ops_filter
=
[])
# set xpu
if
use_xpu
:
# 2MB l3 cache
config
.
enable_xpu
(
8
*
1024
*
1024
)
# set cpu low precision
if
not
use_gpu
and
not
use_lite
:
if
precision_type
==
paddle_infer
.
PrecisionType
.
Int8
:
logger
.
warning
(
...
...
@@ -165,6 +189,9 @@ class LocalPredictor(object):
#config.enable_quantizer()
if
precision
is
not
None
and
precision
.
lower
()
==
"bf16"
:
config
.
enable_mkldnn_bfloat16
()
if
mkldnn_bf16_op_list
is
not
None
:
config
.
set_bfloat16_op
(
mkldnn_bf16_op_list
)
self
.
predictor
=
paddle_infer
.
create_predictor
(
config
)
def
predict
(
self
,
feed
=
None
,
fetch
=
None
,
batch
=
False
,
log_id
=
0
):
...
...
python/pipeline/local_service_handler.py
浏览文件 @
edf0f601
...
...
@@ -45,7 +45,11 @@ class LocalServiceHandler(object):
ir_optim
=
False
,
available_port_generator
=
None
,
use_profile
=
False
,
precision
=
"fp32"
):
precision
=
"fp32"
,
use_mkldnn
=
False
,
mkldnn_cache_capacity
=
0
,
mkldnn_op_list
=
None
,
mkldnn_bf16_op_list
=
None
):
"""
Initialization of localservicehandler
...
...
@@ -64,6 +68,10 @@ class LocalServiceHandler(object):
available_port_generator: generate available ports
use_profile: use profiling, False default.
precision: inference precesion, e.g. "fp32", "fp16", "int8"
use_mkldnn: use mkldnn, default False.
mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
mkldnn_op_list: OP list optimized by mkldnn, None default.
mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
Returns:
None
...
...
@@ -78,6 +86,10 @@ class LocalServiceHandler(object):
self
.
_use_trt
=
False
self
.
_use_lite
=
False
self
.
_use_xpu
=
False
self
.
_use_mkldnn
=
False
self
.
_mkldnn_cache_capacity
=
0
self
.
_mkldnn_op_list
=
None
self
.
_mkldnn_bf16_op_list
=
None
if
device_type
==
-
1
:
# device_type is not set, determined by `devices`,
...
...
@@ -140,16 +152,24 @@ class LocalServiceHandler(object):
self
.
_use_profile
=
use_profile
self
.
_fetch_names
=
fetch_names
self
.
_precision
=
precision
self
.
_use_mkldnn
=
use_mkldnn
self
.
_mkldnn_cache_capacity
=
mkldnn_cache_capacity
self
.
_mkldnn_op_list
=
mkldnn_op_list
self
.
_mkldnn_bf16_op_list
=
mkldnn_bf16_op_list
_LOGGER
.
info
(
"Models({}) will be launched by device {}. use_gpu:{}, "
"use_trt:{}, use_lite:{}, use_xpu:{}, device_type:{}, devices:{}, "
"mem_optim:{}, ir_optim:{}, use_profile:{}, thread_num:{}, "
"client_type:{}, fetch_names:{} precision:{}"
.
format
(
"client_type:{}, fetch_names:{}, precision:{}, use_mkldnn:{}, "
"mkldnn_cache_capacity:{}, mkldnn_op_list:{}, "
"mkldnn_bf16_op_list:{}"
.
format
(
model_config
,
self
.
_device_name
,
self
.
_use_gpu
,
self
.
_use_trt
,
self
.
_use_lite
,
self
.
_use_xpu
,
device_type
,
self
.
_devices
,
self
.
_mem_optim
,
self
.
_ir_optim
,
self
.
_use_profile
,
self
.
_thread_num
,
self
.
_client_type
,
self
.
_fetch_names
,
self
.
_precision
))
self
.
_use_lite
,
self
.
_use_xpu
,
device_type
,
self
.
_devices
,
self
.
_mem_optim
,
self
.
_ir_optim
,
self
.
_use_profile
,
self
.
_thread_num
,
self
.
_client_type
,
self
.
_fetch_names
,
self
.
_precision
,
self
.
_use_mkldnn
,
self
.
_mkldnn_cache_capacity
,
self
.
_mkldnn_op_list
,
self
.
_mkldnn_bf16_op_list
))
def
get_fetch_list
(
self
):
return
self
.
_fetch_names
...
...
@@ -189,7 +209,7 @@ class LocalServiceHandler(object):
from
paddle_serving_app.local_predict
import
LocalPredictor
if
self
.
_local_predictor_client
is
None
:
self
.
_local_predictor_client
=
LocalPredictor
()
# load model config and init predictor
self
.
_local_predictor_client
.
load_model_config
(
model_path
=
self
.
_model_config
,
use_gpu
=
self
.
_use_gpu
,
...
...
@@ -201,7 +221,11 @@ class LocalServiceHandler(object):
use_trt
=
self
.
_use_trt
,
use_lite
=
self
.
_use_lite
,
use_xpu
=
self
.
_use_xpu
,
precision
=
self
.
_precision
)
precision
=
self
.
_precision
,
use_mkldnn
=
self
.
_use_mkldnn
,
mkldnn_cache_capacity
=
self
.
_mkldnn_cache_capacity
,
mkldnn_op_list
=
self
.
_mkldnn_op_list
,
mkldnn_bf16_op_list
=
self
.
_mkldnn_bf16_op_list
)
return
self
.
_local_predictor_client
def
get_client_config
(
self
):
...
...
python/pipeline/operator.py
浏览文件 @
edf0f601
...
...
@@ -139,6 +139,11 @@ class Op(object):
self
.
mem_optim
=
False
self
.
ir_optim
=
False
self
.
precision
=
"fp32"
self
.
use_mkldnn
=
False
self
.
mkldnn_cache_capacity
=
0
self
.
mkldnn_op_list
=
None
self
.
mkldnn_bf16_op_list
=
None
if
self
.
_server_endpoints
is
None
:
server_endpoints
=
conf
.
get
(
"server_endpoints"
,
[])
if
len
(
server_endpoints
)
!=
0
:
...
...
@@ -161,6 +166,14 @@ class Op(object):
self
.
ir_optim
=
local_service_conf
.
get
(
"ir_optim"
)
self
.
_fetch_names
=
local_service_conf
.
get
(
"fetch_list"
)
self
.
precision
=
local_service_conf
.
get
(
"precision"
)
self
.
use_mkldnn
=
local_service_conf
.
get
(
"use_mkldnn"
)
self
.
mkldnn_cache_capacity
=
local_service_conf
.
get
(
"mkldnn_cache_capacity"
)
self
.
mkldnn_op_list
=
local_service_conf
.
get
(
"mkldnn_op_list"
)
self
.
mkldnn_bf16_op_list
=
local_service_conf
.
get
(
"mkldnn_bf16_op_list"
)
if
self
.
model_config
is
None
:
self
.
with_serving
=
False
else
:
...
...
@@ -176,7 +189,12 @@ class Op(object):
devices
=
self
.
devices
,
mem_optim
=
self
.
mem_optim
,
ir_optim
=
self
.
ir_optim
,
precision
=
self
.
precision
)
precision
=
self
.
precision
,
use_mkldnn
=
self
.
use_mkldnn
,
mkldnn_cache_capacity
=
self
.
mkldnn_cache_capacity
,
mkldnn_op_list
=
self
.
mkldnn_bf16_op_list
,
mkldnn_bf16_op_list
=
self
.
mkldnn_bf16_op_list
)
service_handler
.
prepare_server
()
# get fetch_list
serivce_ports
=
service_handler
.
get_port_list
()
self
.
_server_endpoints
=
[
...
...
@@ -199,7 +217,12 @@ class Op(object):
fetch_names
=
self
.
_fetch_names
,
mem_optim
=
self
.
mem_optim
,
ir_optim
=
self
.
ir_optim
,
precision
=
self
.
precision
)
precision
=
self
.
precision
,
use_mkldnn
=
self
.
use_mkldnn
,
mkldnn_cache_capacity
=
self
.
mkldnn_cache_capacity
,
mkldnn_op_list
=
self
.
mkldnn_op_list
,
mkldnn_bf16_op_list
=
self
.
mkldnn_bf16_op_list
)
if
self
.
_client_config
is
None
:
self
.
_client_config
=
service_handler
.
get_client_config
(
)
...
...
@@ -564,7 +587,9 @@ class Op(object):
self
.
_get_output_channels
(),
False
,
trace_buffer
,
self
.
model_config
,
self
.
workdir
,
self
.
thread_num
,
self
.
device_type
,
self
.
devices
,
self
.
mem_optim
,
self
.
ir_optim
,
self
.
precision
))
self
.
ir_optim
,
self
.
precision
,
self
.
use_mkldnn
,
self
.
mkldnn_cache_capacity
,
self
.
mkldnn_op_list
,
self
.
mkldnn_bf16_op_list
))
p
.
daemon
=
True
p
.
start
()
process
.
append
(
p
)
...
...
@@ -598,7 +623,9 @@ class Op(object):
self
.
_get_output_channels
(),
True
,
trace_buffer
,
self
.
model_config
,
self
.
workdir
,
self
.
thread_num
,
self
.
device_type
,
self
.
devices
,
self
.
mem_optim
,
self
.
ir_optim
,
self
.
precision
))
self
.
ir_optim
,
self
.
precision
,
self
.
use_mkldnn
,
self
.
mkldnn_cache_capacity
,
self
.
mkldnn_op_list
,
self
.
mkldnn_bf16_op_list
))
# When a process exits, it attempts to terminate
# all of its daemonic child processes.
t
.
daemon
=
True
...
...
@@ -1068,7 +1095,8 @@ class Op(object):
def
_run
(
self
,
concurrency_idx
,
input_channel
,
output_channels
,
is_thread_op
,
trace_buffer
,
model_config
,
workdir
,
thread_num
,
device_type
,
devices
,
mem_optim
,
ir_optim
,
precision
):
device_type
,
devices
,
mem_optim
,
ir_optim
,
precision
,
use_mkldnn
,
mkldnn_cache_capacity
,
mkldnn_op_list
,
mkldnn_bf16_op_list
):
"""
_run() is the entry function of OP process / thread model.When client
type is local_predictor in process mode, the CUDA environment needs to
...
...
@@ -1090,7 +1118,11 @@ class Op(object):
devices: gpu id list[gpu], "" default[cpu]
mem_optim: use memory/graphics memory optimization, True default.
ir_optim: use calculation chart optimization, False default.
precision: inference precision, e.g. "fp32", "fp16", "int8"
precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
use_mkldnn: use mkldnn, default False.
mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
mkldnn_op_list: OP list optimized by mkldnn, None default.
mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
Returns:
None
...
...
@@ -1110,7 +1142,11 @@ class Op(object):
devices
=
devices
,
mem_optim
=
mem_optim
,
ir_optim
=
ir_optim
,
precision
=
precision
)
precision
=
precision
,
use_mkldnn
=
use_mkldnn
,
mkldnn_cache_capacity
=
mkldnn_cache_capacity
,
mkldnn_op_list
=
mkldnn_op_list
,
mkldnn_bf16_op_list
=
mkldnn_bf16_op_list
)
_LOGGER
.
info
(
"Init cuda env in process {}"
.
format
(
concurrency_idx
))
...
...
python/pipeline/pipeline_server.py
浏览文件 @
edf0f601
...
...
@@ -239,6 +239,8 @@ class PipelineServer(object):
"ir_optim"
:
False
,
"precision"
:
"fp32"
,
"use_calib"
:
False
,
"use_mkldnn"
:
False
,
"mkldnn_cache_capacity"
:
0
,
},
}
for
op
in
self
.
_used_op
:
...
...
@@ -397,6 +399,8 @@ class ServerYamlConfChecker(object):
"ir_optim"
:
False
,
"precision"
:
"fp32"
,
"use_calib"
:
False
,
"use_mkldnn"
:
False
,
"mkldnn_cache_capacity"
:
0
,
}
conf_type
=
{
"model_config"
:
str
,
...
...
@@ -408,6 +412,10 @@ class ServerYamlConfChecker(object):
"ir_optim"
:
bool
,
"precision"
:
str
,
"use_calib"
:
bool
,
"use_mkldnn"
:
bool
,
"mkldnn_cache_capacity"
:
int
,
"mkldnn_op_list"
:
list
,
"mkldnn_bf16_op_list"
:
list
,
}
conf_qualification
=
{
"thread_num"
:
(
">="
,
1
),
}
ServerYamlConfChecker
.
check_conf
(
conf
,
default_conf
,
conf_type
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录