未验证 提交 ec6fa1ad 编写于 作者: J Jiawei Wang 提交者: GitHub

Merge pull request #1352 from bjjwwang/v0.6.3

Darknet encryption
# Imagenet Pipeline WebService
This document will takes Imagenet service as an example to introduce how to use Pipeline WebService.
## Get model
```
sh get_model.sh
python encrypt.py
```
## Start server
```
python -m paddle_serving_server.serve --model encrypt_server/ --port 9400 --encryption_rpc_port 9401 --use_encryption_model &
python web_service.py &>log.txt &
```
## client test
```
python http_client.py
```
if you configure the api gateway, you can use `https_client.py`
# Imagenet Pipeline WebService
这里以 Imagenet 服务为例来介绍 Pipeline WebService 的使用。
## 获取模型
```
sh get_model.sh
python encrypt.py
```
## 启动服务
```
python -m paddle_serving_server.serve --model encrypt_server/ --port 9400 --encryption_rpc_port 9401 --use_encryption_model &
python web_service.py &>log.txt &
```
## 测试
```
python http_client.py
```
如果您已经配置好了api gateway, 您可以使用 `https_client.py`
~
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 1
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 18080
rpc_port: 9993
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: False
op:
imagenet:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 1
client_type: brpc
retry: 1
timeout: 3000
server_endpoints: ["127.0.0.1:9400"]
client_config: "encrypt_client"
fetch_list: ["save_infer_model/scale_0.tmp_0"]
batch_size: 1
auto_batching_timeout: 2000
use_encryption_model: True
encryption_key: "./key"
from paddle_serving_client.io import inference_model_to_serving
def serving_encryption():
inference_model_to_serving(
dirname="./DarkNet53/ppcls_model/",
model_filename="__model__",
params_filename="./__params__",
serving_server="encrypt_server",
serving_client="encrypt_client",
encryption=True)
if __name__ == "__main__":
serving_encryption()
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/model/DarkNet53.tar
tar -xf DarkNet53.tar
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imagenet-example/image_data.tar.gz
tar -xzvf image_data.tar.gz
import numpy as np
import requests
import json
import cv2
import base64
import os
def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8')
if __name__ == "__main__":
url = "http://127.0.0.1:18080/imagenet/prediction"
with open(os.path.join(".", "daisy.jpg"), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
header = {"Content-Type":"application/json", "apikey":"WeJn7tVjuujtGxBgl6cWRGpmL2VMEBdb", "X-INSTANCE-ID" : "kong_ins10"}
data = {"key": ["image"], "value": [image]}
for i in range(1):
r = requests.post(url=url, data=json.dumps(data))
print(r.json())
import numpy as np
import requests
import json
import cv2
import base64
import os
def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8')
if __name__ == "__main__":
url = "https://10.21.8.132:8443/image-clas/imagenet/prediction"
with open(os.path.join(".", "daisy.jpg"), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
headers = {"Content-Type":"application/json", "apikey":"BlfvO08Z9mQpFjcMagl2dxOIA8h2UVdp", "X-INSTANCE-ID" : "kong_ins10"}
data = {"key": ["image"], "value": [image]}
for i in range(1):
r = requests.post(url=url, headers=headers, data=json.dumps(data),verify=False)
print(r.json())
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import base64, cv2
class ImagenetOp(Op):
def init_op(self):
self.seq = Sequential([
Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
True)
])
self.label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
for line in fin:
self.label_dict[label_idx] = line.strip()
label_idx += 1
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
batch_size = len(input_dict.keys())
imgs = []
for key in input_dict.keys():
data = base64.b64decode(input_dict[key].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
img = self.seq(im)
imgs.append(img[np.newaxis, :].copy())
input_imgs = np.concatenate(imgs, axis=0)
return {"image": input_imgs}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, log_id):
score_list = fetch_dict["save_infer_model/scale_0.tmp_0"]
result = {"label": [], "prob": []}
for score in score_list:
score = score.tolist()
max_score = max(score)
result["label"].append(self.label_dict[score.index(max_score)]
.strip().replace(",", ""))
result["prob"].append(max_score)
result["label"] = str(result["label"])
result["prob"] = str(result["prob"])
return result, None, ""
class ImageService(WebService):
def get_pipeline_response(self, read_op):
image_op = ImagenetOp(name="imagenet", input_ops=[read_op])
return image_op
uci_service = ImageService(name="imagenet")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册