未验证 提交 ea822aa7 编写于 作者: D Dong Daxiang 提交者: GitHub

Merge pull request #683 from barrierye/supplement-grpc-impl

supplement grpc impl
......@@ -28,16 +28,17 @@ message FeedInst { repeated Tensor tensor_array = 1; };
message FetchInst { repeated Tensor tensor_array = 1; };
message Request {
message InferenceRequest {
repeated FeedInst insts = 1;
repeated string feed_var_names = 2;
repeated string fetch_var_names = 3;
required bool is_python = 4 [ default = false ];
};
message Response {
message InferenceResponse {
repeated ModelOutput outputs = 1;
optional string tag = 2;
required int32 err_code = 3;
};
message ModelOutput {
......@@ -45,6 +46,17 @@ message ModelOutput {
optional string engine_name = 2;
}
message SetTimeoutRequest { required int32 timeout_ms = 1; }
message SimpleResponse { required int32 err_code = 1; }
message GetClientConfigRequest {}
message GetClientConfigResponse { required string client_config_str = 1; }
service MultiLangGeneralModelService {
rpc inference(Request) returns (Response) {}
rpc Inference(InferenceRequest) returns (InferenceResponse) {}
rpc SetTimeout(SetTimeoutRequest) returns (SimpleResponse) {}
rpc GetClientConfig(GetClientConfigRequest)
returns (GetClientConfigResponse) {}
};
# gRPC接口
gRPC 接口实现形式类似 Web Service:
![](grpc_impl.png)
## 与bRPC接口对比
1. gRPC Server 端 `load_model_config` 函数添加 `client_config_path` 参数:
```python
def load_model_config(self, server_config_paths, client_config_path=None)
```
在一些例子中 bRPC Server 端与 bRPC Client 端的配置文件可能是不同的(如 cube local 例子中,Client 端的数据先交给 cube,经过 cube 处理后再交给预测库),所以 gRPC Server 端需要获取 gRPC Client 端的配置;同时为了取消 gRPC Client 端手动加载配置文件的过程,所以设计 gRPC Server 端同时加载两个配置文件。`client_config_path` 默认为 `<server_config_path>/serving_server_conf.prototxt`
2. gRPC Client 端取消 `load_client_config` 步骤:
`connect` 步骤通过 RPC 获取相应的 prototxt(从任意一个 endpoint 获取即可)。
3. gRPC Client 需要通过 RPC 方式设置 timeout 时间(调用形式与 bRPC Client保持一致)
因为 bRPC Client 在 `connect` 后无法更改 timeout 时间,所以当 gRPC Server 收到变更 timeout 的调用请求时会重新创建 bRPC Client 实例以变更 bRPC Client timeout时间,同时 gRPC Client 会设置 gRPC 的 deadline 时间。
**注意,设置 timeout 接口和 Inference 接口不能同时调用(非线程安全),出于性能考虑暂时不加锁。**
4. gRPC Client 端 `predict` 函数添加 `asyn``is_python` 参数:
```python
def predict(self, feed, fetch, need_variant_tag=False, asyn=False, is_python=True)
```
其中,`asyn` 为异步调用选项。当 `asyn=True` 时为异步调用,返回 `MultiLangPredictFuture` 对象,通过 `MultiLangPredictFuture.result()` 阻塞获取预测值;当 `asyn=Fasle` 为同步调用。
`is_python` 为 proto 格式选项。当 `is_python=True` 时,基于 numpy bytes 格式进行数据传输,目前只适用于 Python;当 `is_python=False` 时,以普通数据格式传输,更加通用。使用 numpy bytes 格式传输耗时比普通数据格式小很多(详见 [#654](https://github.com/PaddlePaddle/Serving/pull/654))。
5. 异常处理:当 gRPC Server 端的 bRPC Client 预测失败(返回 `None`)时,gRPC Client 端同样返回None。其他 gRPC 异常会在 Client 内部捕获,并在返回的 fetch_map 中添加一个 "status_code" 字段来区分是否预测正常(参考 timeout 样例)。
6. 由于 gRPC 只支持 pick_first 和 round_robin 负载均衡策略,ABTEST 特性还未打齐。
7. 经测试,gRPC 版本可以在 Windows、macOS 平台使用。
8. 计划支持的客户端语言:
- [x] Python
- [ ] Java
- [ ] Go
- [ ] JavaScript
## Python 端的一些例子
详见 `python/examples/grpc_impl_example` 下的示例文件。
## 带稀疏参数索引服务的CTR预测服务
该样例是为了展示gRPC Server 端 `load_model_config` 函数,在这个例子中,bRPC Server 端与 bRPC Client 端的配置文件是不同的(bPRC Client 端的数据先交给 cube,经过 cube 处理后再交给预测库)
### 获取样例数据
```
sh get_data.sh
```
### 下载模型和稀疏参数序列文件
```
wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz
tar xf ctr_cube_unittest.tar.gz
mv models/ctr_client_conf ./
mv models/ctr_serving_model_kv ./
mv models/data ./cube/
```
执行脚本后会在当前目录有ctr_server_model_kv和ctr_client_config文件夹。
### 启动稀疏参数索引服务
```
wget https://paddle-serving.bj.bcebos.com/others/cube_app.tar.gz
tar xf cube_app.tar.gz
mv cube_app/cube* ./cube/
sh cube_prepare.sh &
```
此处,模型当中的稀疏参数会被存放在稀疏参数索引服务Cube当中,关于稀疏参数索引服务Cube的介绍,请阅读[稀疏参数索引服务Cube单机版使用指南](../../../doc/CUBE_LOCAL_CN.md)
### 启动RPC预测服务,服务端线程数为4(可在test_server.py配置)
```
python test_server.py ctr_serving_model_kv ctr_client_conf/serving_client_conf.prototxt
```
### 执行预测
```
python test_client.py ./raw_data
```
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="PaddlePaddle CTR example")
parser.add_argument(
'--train_data_path',
type=str,
default='./data/raw/train.txt',
help="The path of training dataset")
parser.add_argument(
'--sparse_only',
type=bool,
default=False,
help="Whether we use sparse features only")
parser.add_argument(
'--test_data_path',
type=str,
default='./data/raw/valid.txt',
help="The path of testing dataset")
parser.add_argument(
'--batch_size',
type=int,
default=1000,
help="The size of mini-batch (default:1000)")
parser.add_argument(
'--embedding_size',
type=int,
default=10,
help="The size for embedding layer (default:10)")
parser.add_argument(
'--num_passes',
type=int,
default=10,
help="The number of passes to train (default: 10)")
parser.add_argument(
'--model_output_dir',
type=str,
default='models',
help='The path for model to store (default: models)')
parser.add_argument(
'--sparse_feature_dim',
type=int,
default=1000001,
help='sparse feature hashing space for index processing')
parser.add_argument(
'--is_local',
type=int,
default=1,
help='Local train or distributed train (default: 1)')
parser.add_argument(
'--cloud_train',
type=int,
default=0,
help='Local train or distributed train on paddlecloud (default: 0)')
parser.add_argument(
'--async_mode',
action='store_true',
default=False,
help='Whether start pserver in async mode to support ASGD')
parser.add_argument(
'--no_split_var',
action='store_true',
default=False,
help='Whether split variables into blocks when update_method is pserver')
parser.add_argument(
'--role',
type=str,
default='pserver', # trainer or pserver
help='The path for model to store (default: models)')
parser.add_argument(
'--endpoints',
type=str,
default='127.0.0.1:6000',
help='The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001')
parser.add_argument(
'--current_endpoint',
type=str,
default='127.0.0.1:6000',
help='The path for model to store (default: 127.0.0.1:6000)')
parser.add_argument(
'--trainer_id',
type=int,
default=0,
help='The path for model to store (default: models)')
parser.add_argument(
'--trainers',
type=int,
default=1,
help='The num of trianers, (default: 1)')
return parser.parse_args()
ps -ef | grep cube | awk {'print $2'} | xargs kill -9
rm -rf cube/cube_data cube/data cube/log* cube/nohup* cube/output/ cube/donefile cube/input cube/monitor cube/cube-builder.INFO
ps -ef | grep test | awk {'print $2'} | xargs kill -9
ps -ef | grep serving | awk {'print $2'} | xargs kill -9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
class CriteoDataset(object):
def setup(self, sparse_feature_dim):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [
20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.cont_diff_ = [
20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.hash_dim_ = sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self.train_idx_ = 41256555
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
def _process_line(self, line):
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in self.continuous_range_:
if features[idx] == '':
dense_feature.append(0.0)
else:
dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
sparse_feature.append(
[hash(str(idx) + features[idx]) % self.hash_dim_])
return dense_feature, sparse_feature, [int(features[0])]
def infer_reader(self, filelist, batch, buf_size):
def local_iter():
for fname in filelist:
with open(fname.strip(), "r") as fin:
for line in fin:
dense_feature, sparse_feature, label = self._process_line(
line)
#yield dense_feature, sparse_feature, label
yield [dense_feature] + sparse_feature + [label]
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def data_iter():
dense_feature, sparse_feature, label = self._process_line(line)
feature_name = ["dense_input"]
for idx in self.categorical_range_:
feature_name.append("C" + str(idx - 13))
feature_name.append("label")
yield zip(feature_name, [dense_feature] + sparse_feature + [label])
return data_iter
if __name__ == "__main__":
criteo_dataset = CriteoDataset()
criteo_dataset.setup(int(sys.argv[1]))
criteo_dataset.run_from_stdin()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import paddle.fluid.incubate.data_generator as dg
class CriteoDataset(dg.MultiSlotDataGenerator):
def setup(self, sparse_feature_dim):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [
20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.cont_diff_ = [
20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.hash_dim_ = sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self.train_idx_ = 41256555
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
def _process_line(self, line):
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in self.continuous_range_:
if features[idx] == '':
dense_feature.append(0.0)
else:
dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
sparse_feature.append(
[hash(str(idx) + features[idx]) % self.hash_dim_])
return dense_feature, sparse_feature, [int(features[0])]
def infer_reader(self, filelist, batch, buf_size):
def local_iter():
for fname in filelist:
with open(fname.strip(), "r") as fin:
for line in fin:
dense_feature, sparse_feature, label = self._process_line(
line)
#yield dense_feature, sparse_feature, label
yield [dense_feature] + sparse_feature + [label]
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def data_iter():
dense_feature, sparse_feature, label = self._process_line(line)
feature_name = ["dense_input"]
for idx in self.categorical_range_:
feature_name.append("C" + str(idx - 13))
feature_name.append("label")
yield zip(feature_name, [dense_feature] + sparse_feature + [label])
return data_iter
if __name__ == "__main__":
criteo_dataset = CriteoDataset()
criteo_dataset.setup(int(sys.argv[1]))
criteo_dataset.run_from_stdin()
[{
"dict_name": "test_dict",
"shard": 1,
"dup": 1,
"timeout": 200,
"retry": 3,
"backup_request": 100,
"type": "ipport_list",
"load_balancer": "rr",
"nodes": [{
"ipport_list": "list://127.0.0.1:8027"
}]
}]
--port=8027
--dict_split=1
--in_mem=true
--log_dir=./log/
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
#! /bin/bash
mkdir -p cube_model
mkdir -p cube/data
./seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature
./cube/cube-builder -dict_name=test_dict -job_mode=base -last_version=0 -cur_version=0 -depend_version=0 -input_path=./cube_model -output_path=${PWD}/cube/data -shard_num=1 -only_build=false
mv ./cube/data/0_0/test_dict_part0/* ./cube/data/
cd cube && ./cube
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
#! /bin/bash
mkdir -p cube_model
mkdir -p cube/data
./seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature 8
./cube/cube-builder -dict_name=test_dict -job_mode=base -last_version=0 -cur_version=0 -depend_version=0 -input_path=./cube_model -output_path=${PWD}/cube/data -shard_num=1 -only_build=false
mv ./cube/data/0_0/test_dict_part0/* ./cube/data/
cd cube && ./cube
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/data/ctr_prediction/ctr_data.tar.gz
tar -zxvf ctr_data.tar.gz
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from __future__ import print_function
from args import parse_args
import os
import paddle.fluid as fluid
import sys
from network_conf import dnn_model
dense_feature_dim = 13
def train():
args = parse_args()
sparse_only = args.sparse_only
if not os.path.isdir(args.model_output_dir):
os.mkdir(args.model_output_dir)
dense_input = fluid.layers.data(
name="dense_input", shape=[dense_feature_dim], dtype='float32')
sparse_input_ids = [
fluid.layers.data(
name="C" + str(i), shape=[1], lod_level=1, dtype="int64")
for i in range(1, 27)
]
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
#nn_input = None if sparse_only else dense_input
nn_input = dense_input
predict_y, loss, auc_var, batch_auc_var, infer_vars = dnn_model(
nn_input, sparse_input_ids, label, args.embedding_size,
args.sparse_feature_dim)
optimizer = fluid.optimizer.SGD(learning_rate=1e-4)
optimizer.minimize(loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
dataset.set_use_var([dense_input] + sparse_input_ids + [label])
python_executable = "python"
pipe_command = "{} criteo_reader.py {}".format(python_executable,
args.sparse_feature_dim)
dataset.set_pipe_command(pipe_command)
dataset.set_batch_size(128)
thread_num = 10
dataset.set_thread(thread_num)
whole_filelist = [
"raw_data/part-%d" % x for x in range(len(os.listdir("raw_data")))
]
print(whole_filelist)
dataset.set_filelist(whole_filelist[:100])
dataset.load_into_memory()
fluid.layers.Print(auc_var)
epochs = 1
for i in range(epochs):
exe.train_from_dataset(
program=fluid.default_main_program(), dataset=dataset, debug=True)
print("epoch {} finished".format(i))
import paddle_serving_client.io as server_io
feed_var_dict = {}
feed_var_dict['dense_input'] = dense_input
for i, sparse in enumerate(sparse_input_ids):
feed_var_dict["embedding_{}.tmp_0".format(i)] = sparse
fetch_var_dict = {"prob": predict_y}
feed_kv_dict = {}
feed_kv_dict['dense_input'] = dense_input
for i, emb in enumerate(infer_vars):
feed_kv_dict["embedding_{}.tmp_0".format(i)] = emb
fetch_var_dict = {"prob": predict_y}
server_io.save_model("ctr_serving_model", "ctr_client_conf", feed_var_dict,
fetch_var_dict, fluid.default_main_program())
server_io.save_model("ctr_serving_model_kv", "ctr_client_conf_kv",
feed_kv_dict, fetch_var_dict,
fluid.default_main_program())
if __name__ == '__main__':
train()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import paddle.fluid as fluid
import math
def dnn_model(dense_input, sparse_inputs, label, embedding_size,
sparse_feature_dim):
def embedding_layer(input):
emb = fluid.layers.embedding(
input=input,
is_sparse=True,
is_distributed=False,
size=[sparse_feature_dim, embedding_size],
param_attr=fluid.ParamAttr(
name="SparseFeatFactors",
initializer=fluid.initializer.Uniform()))
x = fluid.layers.sequence_pool(input=emb, pool_type='sum')
return emb, x
def mlp_input_tensor(emb_sums, dense_tensor):
#if isinstance(dense_tensor, fluid.Variable):
# return fluid.layers.concat(emb_sums, axis=1)
#else:
return fluid.layers.concat(emb_sums + [dense_tensor], axis=1)
def mlp(mlp_input):
fc1 = fluid.layers.fc(input=mlp_input,
size=400,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(mlp_input.shape[1]))))
fc2 = fluid.layers.fc(input=fc1,
size=400,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(fc1.shape[1]))))
fc3 = fluid.layers.fc(input=fc2,
size=400,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(fc2.shape[1]))))
pre = fluid.layers.fc(input=fc3,
size=2,
act='softmax',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(fc3.shape[1]))))
return pre
emb_pair_sums = list(map(embedding_layer, sparse_inputs))
emb_sums = [x[1] for x in emb_pair_sums]
infer_vars = [x[0] for x in emb_pair_sums]
mlp_in = mlp_input_tensor(emb_sums, dense_input)
predict = mlp(mlp_in)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.reduce_sum(cost)
accuracy = fluid.layers.accuracy(input=predict, label=label)
auc_var, batch_auc_var, auc_states = \
fluid.layers.auc(input=predict, label=label, num_thresholds=2 ** 12, slide_steps=20)
return predict, avg_cost, auc_var, batch_auc_var, infer_vars
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient as Client
import sys
import os
import criteo as criteo
import time
from paddle_serving_client.metric import auc
import grpc
client = Client()
client.connect(["127.0.0.1:9292"])
batch = 1
buf_size = 100
dataset = criteo.CriteoDataset()
dataset.setup(1000001)
test_filelists = ["{}/part-0".format(sys.argv[1])]
reader = dataset.infer_reader(test_filelists, batch, buf_size)
label_list = []
prob_list = []
start = time.time()
for ei in range(10000):
data = reader().next()
feed_dict = {}
feed_dict['dense_input'] = data[0][0]
for i in range(1, 27):
feed_dict["embedding_{}.tmp_0".format(i - 1)] = data[0][i]
fetch_map = client.predict(feed=feed_dict, fetch=["prob"])
if fetch_map["serving_status_code"] == 0:
prob_list.append(fetch_map['prob'][0][1])
label_list.append(data[0][-1][0])
print(auc(label_list, prob_list))
end = time.time()
print(end - start)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import os
import sys
from paddle_serving_server import OpMaker
from paddle_serving_server import OpSeqMaker
from paddle_serving_server import MultiLangServer as Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_dist_kv_infer_op = op_maker.create('general_dist_kv_infer')
response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_dist_kv_infer_op)
op_seq_maker.add_op(response_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1], sys.argv[2])
server.prepare_server(workdir="work_dir1", port=9292, device="cpu")
server.run_server()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import os
import sys
from paddle_serving_server_gpu import OpMaker
from paddle_serving_server_gpu import OpSeqMaker
from paddle_serving_server_gpu import MultiLangServer as Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_dist_kv_infer_op = op_maker.create('general_dist_kv_infer')
response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_dist_kv_infer_op)
op_seq_maker.add_op(response_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1], sys.argv[2])
server.prepare_server(workdir="work_dir1", port=9292, device="cpu")
server.run_server()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import os
import sys
from paddle_serving_server import OpMaker
from paddle_serving_server import OpSeqMaker
from paddle_serving_server import MultiLangServer as Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_dist_kv_infer_op = op_maker.create('general_dist_kv_quant_infer')
response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_dist_kv_infer_op)
op_seq_maker.add_op(response_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1], sys.argv[2])
server.prepare_server(workdir="work_dir1", port=9292, device="cpu")
server.run_server()
# 线性回归预测服务示例
## 获取数据
```shell
sh get_data.sh
```
## 开启 gRPC 服务端
``` shell
python test_server.py uci_housing_model/
```
也可以通过下面的一行代码开启默认 gRPC 服务:
```shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393 --use_multilang
```
## 客户端预测
### 同步预测
``` shell
python test_sync_client.py
```
### 异步预测
``` shell
python test_asyn_client.py
```
### Batch 预测
``` shell
python test_batch_client.py
```
### 通用 pb 预测
``` shell
python test_general_pb_client.py
```
### 预测超时
``` shell
python test_timeout_client.py
```
### List 输入
``` shell
python test_list_input_client.py
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
......@@ -13,38 +13,39 @@
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient
from paddle_serving_client import MultiLangClient as Client
import functools
import sys
import time
import threading
import grpc
client = MultiLangClient()
client.load_client_config(sys.argv[1])
client = Client()
client.connect(["127.0.0.1:9393"])
import paddle
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500),
batch_size=1)
complete_task_count = [0]
lock = threading.Lock()
def call_back(call_future, data):
fetch_map = call_future.result()
print("{} {}".format(fetch_map["price"][0], data[0][1][0]))
with lock:
complete_task_count[0] += 1
def call_back(call_future):
try:
fetch_map = call_future.result()
print(fetch_map)
except grpc.RpcError as e:
print(e.code())
finally:
with lock:
complete_task_count[0] += 1
x = [
0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283,
0.4919, 0.1856, 0.0795, -0.0332
]
task_count = 0
for data in test_reader():
future = client.predict(feed={"x": data[0][0]}, fetch=["price"], asyn=True)
for i in range(3):
future = client.predict(feed={"x": x}, fetch=["price"], asyn=True)
task_count += 1
future.add_done_callback(functools.partial(call_back, data=data))
future.add_done_callback(functools.partial(call_back))
while complete_task_count[0] != task_count:
time.sleep(0.1)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient as Client
client = Client()
client.connect(["127.0.0.1:9393"])
batch_size = 2
x = [
0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283,
0.4919, 0.1856, 0.0795, -0.0332
]
for i in range(3):
batch_feed = [{"x": x} for j in range(batch_size)]
fetch_map = client.predict(feed=batch_feed, fetch=["price"])
if fetch_map["serving_status_code"] == 0:
print(fetch_map)
else:
print(fetch_map["serving_status_code"])
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient as Client
client = Client()
client.connect(["127.0.0.1:9393"])
x = [
0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283,
0.4919, 0.1856, 0.0795, -0.0332
]
for i in range(3):
fetch_map = client.predict(feed={"x": x}, fetch=["price"], is_python=False)
if fetch_map["serving_status_code"] == 0:
print(fetch_map)
else:
print(fetch_map["serving_status_code"])
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient as Client
import numpy as np
client = Client()
client.connect(["127.0.0.1:9393"])
x = [
0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283,
0.4919, 0.1856, 0.0795, -0.0332
]
for i in range(3):
fetch_map = client.predict(feed={"x": np.array(x)}, fetch=["price"])
if fetch_map["serving_status_code"] == 0:
print(fetch_map)
else:
print(fetch_map["serving_status_code"])
......@@ -17,7 +17,7 @@ import os
import sys
from paddle_serving_server import OpMaker
from paddle_serving_server import OpSeqMaker
from paddle_serving_server import MultiLangServer
from paddle_serving_server import MultiLangServer as Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
......@@ -29,7 +29,7 @@ op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(response_op)
server = MultiLangServer()
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9393, device="cpu")
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import os
import sys
from paddle_serving_server_gpu import OpMaker
from paddle_serving_server_gpu import OpSeqMaker
from paddle_serving_server_gpu import MultiLangServer as Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_infer_op = op_maker.create('general_infer')
response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(response_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.load_model_config(sys.argv[1])
server.set_gpuid(0)
server.prepare_server(workdir="work_dir1", port=9393, device="cpu")
server.run_server()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient as Client
client = Client()
client.connect(["127.0.0.1:9393"])
x = [
0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283,
0.4919, 0.1856, 0.0795, -0.0332
]
for i in range(3):
fetch_map = client.predict(feed={"x": x}, fetch=["price"])
if fetch_map["serving_status_code"] == 0:
print(fetch_map)
else:
print(fetch_map["serving_status_code"])
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient as Client
import grpc
client = Client()
client.connect(["127.0.0.1:9393"])
client.set_rpc_timeout_ms(1)
x = [
0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283,
0.4919, 0.1856, 0.0795, -0.0332
]
for i in range(3):
fetch_map = client.predict(feed={"x": x}, fetch=["price"])
if fetch_map["serving_status_code"] == 0:
print(fetch_map)
elif fetch_map["serving_status_code"] == grpc.StatusCode.DEADLINE_EXCEEDED:
print('timeout')
else:
print(fetch_map["serving_status_code"])
......@@ -32,11 +32,7 @@ for i in range(3):
line = 'i am very sad | 0'
word_ids, label = imdb_dataset.get_words_and_label(line)
feed = {"words": word_ids}
fetch = ["acc", "cost", "prediction"]
fetch = ["prediction"]
fetch_maps = client.predict(feed=feed, fetch=fetch)
if len(fetch_maps) == 1:
print("step: {}, res: {}".format(i, fetch_maps['prediction'][0][1]))
else:
for model, fetch_map in fetch_maps.items():
print("step: {}, model: {}, res: {}".format(i, model, fetch_map[
'prediction'][0][1]))
for model, fetch_map in fetch_maps.items():
print("step: {}, model: {}, res: {}".format(i, model, fetch_map))
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient
from imdb_reader import IMDBDataset
client = MultiLangClient()
# If you have more than one model, make sure that the input
# and output of more than one model are the same.
client.connect(["127.0.0.1:9393"])
# you can define any english sentence or dataset here
# This example reuses imdb reader in training, you
# can define your own data preprocessing easily.
imdb_dataset = IMDBDataset()
imdb_dataset.load_resource('imdb.vocab')
for i in range(3):
line = 'i am very sad | 0'
word_ids, label = imdb_dataset.get_words_and_label(line)
feed = {"words": word_ids}
fetch = ["prediction"]
fetch_maps = client.predict(feed=feed, fetch=fetch)
for model, fetch_map in fetch_maps.items():
print("step: {}, model: {}, res: {}".format(i, model, fetch_map))
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_server import OpMaker
from paddle_serving_server import OpGraphMaker
from paddle_serving_server import MultiLangServer
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
cnn_infer_op = op_maker.create(
'general_infer', engine_name='cnn', inputs=[read_op])
bow_infer_op = op_maker.create(
'general_infer', engine_name='bow', inputs=[read_op])
response_op = op_maker.create(
'general_response', inputs=[cnn_infer_op, bow_infer_op])
op_graph_maker = OpGraphMaker()
op_graph_maker.add_op(read_op)
op_graph_maker.add_op(cnn_infer_op)
op_graph_maker.add_op(bow_infer_op)
op_graph_maker.add_op(response_op)
server = MultiLangServer()
server.set_op_graph(op_graph_maker.get_op_graph())
model_config = {cnn_infer_op: 'imdb_cnn_model', bow_infer_op: 'imdb_bow_model'}
server.load_model_config(model_config)
server.prepare_server(workdir="work_dir1", port=9393, device="cpu")
server.run_server()
......@@ -397,22 +397,41 @@ class Client(object):
class MultiLangClient(object):
def __init__(self):
self.channel_ = None
self.stub_ = None
self.rpc_timeout_s_ = 2
def load_client_config(self, path):
if not isinstance(path, str):
raise Exception("GClient only supports multi-model temporarily")
self._parse_model_config(path)
def add_variant(self, tag, cluster, variant_weight):
# TODO
raise Exception("cannot support ABtest yet")
def connect(self, endpoint):
def set_rpc_timeout_ms(self, rpc_timeout):
if self.stub_ is None:
raise Exception("set timeout must be set after connect.")
if not isinstance(rpc_timeout, int):
# for bclient
raise ValueError("rpc_timeout must be int type.")
self.rpc_timeout_s_ = rpc_timeout / 1000.0
timeout_req = multi_lang_general_model_service_pb2.SetTimeoutRequest()
timeout_req.timeout_ms = rpc_timeout
resp = self.stub_.SetTimeout(timeout_req)
return resp.err_code == 0
def connect(self, endpoints):
# https://github.com/tensorflow/serving/issues/1382
options = [('grpc.max_receive_message_length', 512 * 1024 * 1024),
('grpc.max_send_message_length', 512 * 1024 * 1024),
('grpc.max_receive_message_length', 512 * 1024 * 1024)]
self.channel_ = grpc.insecure_channel(
endpoint[0], options=options) #TODO
('grpc.lb_policy_name', 'round_robin')]
# TODO: weight round robin
g_endpoint = 'ipv4:{}'.format(','.join(endpoints))
self.channel_ = grpc.insecure_channel(g_endpoint, options=options)
self.stub_ = multi_lang_general_model_service_pb2_grpc.MultiLangGeneralModelServiceStub(
self.channel_)
# get client model config
get_client_config_req = multi_lang_general_model_service_pb2.GetClientConfigRequest(
)
resp = self.stub_.GetClientConfig(get_client_config_req)
model_config_str = resp.client_config_str
self._parse_model_config(model_config_str)
def _flatten_list(self, nested_list):
for item in nested_list:
......@@ -422,11 +441,10 @@ class MultiLangClient(object):
else:
yield item
def _parse_model_config(self, model_config_path):
def _parse_model_config(self, model_config_str):
model_conf = m_config.GeneralModelConfig()
f = open(model_config_path, 'r')
model_conf = google.protobuf.text_format.Merge(
str(f.read()), model_conf)
model_conf = google.protobuf.text_format.Merge(model_config_str,
model_conf)
self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
self.feed_types_ = {}
self.feed_shapes_ = {}
......@@ -447,8 +465,8 @@ class MultiLangClient(object):
if var.is_lod_tensor:
self.lod_tensor_set_.add(var.alias_name)
def _pack_feed_data(self, feed, fetch, is_python):
req = multi_lang_general_model_service_pb2.Request()
def _pack_inference_request(self, feed, fetch, is_python):
req = multi_lang_general_model_service_pb2.InferenceRequest()
req.fetch_var_names.extend(fetch)
req.is_python = is_python
feed_batch = None
......@@ -473,33 +491,50 @@ class MultiLangClient(object):
data = np.array(var, dtype="int64")
elif v_type == 1: # float32
data = np.array(var, dtype="float32")
elif v_type == 2: #int32
elif v_type == 2: # int32
data = np.array(var, dtype="int32")
else:
raise Exception("error type.")
else:
raise Exception("error tensor value type.")
elif isinstance(var, np.ndarray):
data = var
if var.dtype == "float64":
data = data.astype("float32")
if v_type == 0:
if data.dtype != 'int64':
data = data.astype("int64")
elif v_type == 1:
if data.dtype != 'float32':
data = data.astype("float32")
elif v_type == 2:
if data.dtype != 'int32':
data = data.astype("int32")
else:
raise Exception("error tensor value type.")
else:
raise Exception("var must be list or ndarray.")
tensor.data = data.tobytes()
else:
if v_type == 0: # int64
if isinstance(var, np.ndarray):
tensor.int64_data.extend(var.reshape(-1).tolist())
if isinstance(var, np.ndarray):
if v_type == 0: # int64
tensor.int64_data.extend(
var.reshape(-1).astype("int64").tolist())
elif v_type == 1:
tensor.float_data.extend(
var.reshape(-1).astype('float32').tolist())
elif v_type == 2:
tensor.int32_data.extend(
var.reshape(-1).astype('int32').tolist())
else:
raise Exception("error tensor value type.")
elif isinstance(var, list):
if v_type == 0:
tensor.int64_data.extend(self._flatten_list(var))
elif v_type == 1: # float32
if isinstance(var, np.ndarray):
tensor.float_data.extend(var.reshape(-1).tolist())
else:
elif v_type == 1:
tensor.float_data.extend(self._flatten_list(var))
elif v_type == 2: #int32
if isinstance(car, np.array):
tensor.int_data.extend(var.reshape(-1).tolist())
elif v_type == 2:
tensor.int32_data.extend(self._flatten_list(var))
else:
tensor.int_data.extend(self._flatten_list(var))
raise Exception("error tensor value type.")
else:
raise Exception("error type.")
raise Exception("var must be list or ndarray.")
if isinstance(var, np.ndarray):
tensor.shape.extend(list(var.shape))
else:
......@@ -508,40 +543,52 @@ class MultiLangClient(object):
req.insts.append(inst)
return req
def _unpack_resp(self, resp, fetch, is_python, need_variant_tag):
result_map = {}
inst = resp.outputs[0].insts[0]
def _unpack_inference_response(self, resp, fetch, is_python,
need_variant_tag):
if resp.err_code != 0:
return None
tag = resp.tag
for i, name in enumerate(fetch):
var = inst.tensor_array[i]
v_type = self.fetch_types_[name]
if is_python:
if v_type == 0: # int64
result_map[name] = np.frombuffer(var.data, dtype="int64")
elif v_type == 1: # float32
result_map[name] = np.frombuffer(var.data, dtype="float32")
else:
raise Exception("error type.")
else:
if v_type == 0: # int64
result_map[name] = np.array(
list(var.int64_data), dtype="int64")
elif v_type == 1: # float32
result_map[name] = np.array(
list(var.float_data), dtype="float32")
elif v_type == 2: # int32
result_map[name] = np.array(
list(var.int_data), dtype="int32")
multi_result_map = {}
for model_result in resp.outputs:
inst = model_result.insts[0]
result_map = {}
for i, name in enumerate(fetch):
var = inst.tensor_array[i]
v_type = self.fetch_types_[name]
if is_python:
if v_type == 0: # int64
result_map[name] = np.frombuffer(
var.data, dtype="int64")
elif v_type == 1: # float32
result_map[name] = np.frombuffer(
var.data, dtype="float32")
else:
raise Exception("error type.")
else:
raise Exception("error type.")
result_map[name].shape = list(var.shape)
if name in self.lod_tensor_set_:
result_map["{}.lod".format(name)] = np.array(list(var.lod))
return result_map if not need_variant_tag else [result_map, tag]
if v_type == 0: # int64
result_map[name] = np.array(
list(var.int64_data), dtype="int64")
elif v_type == 1: # float32
result_map[name] = np.array(
list(var.float_data), dtype="float32")
else:
raise Exception("error type.")
result_map[name].shape = list(var.shape)
if name in self.lod_tensor_set_:
result_map["{}.lod".format(name)] = np.array(list(var.lod))
multi_result_map[model_result.engine_name] = result_map
ret = None
if len(resp.outputs) == 1:
ret = list(multi_result_map.values())[0]
else:
ret = multi_result_map
ret["serving_status_code"] = 0
return ret if not need_variant_tag else [ret, tag]
def _done_callback_func(self, fetch, is_python, need_variant_tag):
def unpack_resp(resp):
return self._unpack_resp(resp, fetch, is_python, need_variant_tag)
return self._unpack_inference_response(resp, fetch, is_python,
need_variant_tag)
return unpack_resp
......@@ -554,16 +601,20 @@ class MultiLangClient(object):
need_variant_tag=False,
asyn=False,
is_python=True):
req = self._pack_feed_data(feed, fetch, is_python=is_python)
req = self._pack_inference_request(feed, fetch, is_python=is_python)
if not asyn:
resp = self.stub_.inference(req)
return self._unpack_resp(
resp,
fetch,
is_python=is_python,
need_variant_tag=need_variant_tag)
try:
resp = self.stub_.Inference(req, timeout=self.rpc_timeout_s_)
return self._unpack_inference_response(
resp,
fetch,
is_python=is_python,
need_variant_tag=need_variant_tag)
except grpc.RpcError as e:
return {"serving_status_code": e.code()}
else:
call_future = self.stub_.inference.future(req)
call_future = self.stub_.Inference.future(
req, timeout=self.rpc_timeout_s_)
return MultiLangPredictFuture(
call_future,
self._done_callback_func(
......@@ -578,7 +629,10 @@ class MultiLangPredictFuture(object):
self.callback_func_ = callback_func
def result(self):
resp = self.call_future_.result()
try:
resp = self.call_future_.result()
except grpc.RpcError as e:
return {"serving_status_code": e.code()}
return self.callback_func_(resp)
def add_done_callback(self, fn):
......
......@@ -440,22 +440,29 @@ class Server(object):
os.system(command)
class MultiLangServerService(
multi_lang_general_model_service_pb2_grpc.MultiLangGeneralModelService):
def __init__(self, model_config_path, endpoints):
class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
MultiLangGeneralModelServiceServicer):
def __init__(self, model_config_path, is_multi_model, endpoints):
self.is_multi_model_ = is_multi_model
self.model_config_path_ = model_config_path
self.endpoints_ = endpoints
with open(self.model_config_path_) as f:
self.model_config_str_ = str(f.read())
self._parse_model_config(self.model_config_str_)
self._init_bclient(self.model_config_path_, self.endpoints_)
def _init_bclient(self, model_config_path, endpoints, timeout_ms=None):
from paddle_serving_client import Client
self._parse_model_config(model_config_path)
self.bclient_ = Client()
self.bclient_.load_client_config(
"{}/serving_server_conf.prototxt".format(model_config_path))
if timeout_ms is not None:
self.bclient_.set_rpc_timeout_ms(timeout_ms)
self.bclient_.load_client_config(model_config_path)
self.bclient_.connect(endpoints)
def _parse_model_config(self, model_config_path):
def _parse_model_config(self, model_config_str):
model_conf = m_config.GeneralModelConfig()
f = open("{}/serving_server_conf.prototxt".format(model_config_path),
'r')
model_conf = google.protobuf.text_format.Merge(
str(f.read()), model_conf)
model_conf = google.protobuf.text_format.Merge(model_config_str,
model_conf)
self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
self.feed_types_ = {}
self.feed_shapes_ = {}
......@@ -480,7 +487,7 @@ class MultiLangServerService(
else:
yield item
def _unpack_request(self, request):
def _unpack_inference_request(self, request):
feed_names = list(request.feed_var_names)
fetch_names = list(request.fetch_var_names)
is_python = request.is_python
......@@ -492,10 +499,12 @@ class MultiLangServerService(
v_type = self.feed_types_[name]
data = None
if is_python:
if v_type == 0:
if v_type == 0: # int64
data = np.frombuffer(var.data, dtype="int64")
elif v_type == 1:
elif v_type == 1: # float32
data = np.frombuffer(var.data, dtype="float32")
elif v_type == 2: # int32
data = np.frombuffer(var.data, dtype="int32")
else:
raise Exception("error type.")
else:
......@@ -503,6 +512,8 @@ class MultiLangServerService(
data = np.array(list(var.int64_data), dtype="int64")
elif v_type == 1: # float32
data = np.array(list(var.float_data), dtype="float32")
elif v_type == 2: # int32
data = np.array(list(var.int32_data), dtype="int32")
else:
raise Exception("error type.")
data.shape = list(feed_inst.tensor_array[idx].shape)
......@@ -510,55 +521,132 @@ class MultiLangServerService(
feed_batch.append(feed_dict)
return feed_batch, fetch_names, is_python
def _pack_resp_package(self, result, fetch_names, is_python, tag):
resp = multi_lang_general_model_service_pb2.Response()
# Only one model is supported temporarily
model_output = multi_lang_general_model_service_pb2.ModelOutput()
inst = multi_lang_general_model_service_pb2.FetchInst()
for idx, name in enumerate(fetch_names):
tensor = multi_lang_general_model_service_pb2.Tensor()
v_type = self.fetch_types_[name]
if is_python:
tensor.data = result[name].tobytes()
else:
if v_type == 0: # int64
tensor.int64_data.extend(result[name].reshape(-1).tolist())
elif v_type == 1: # float32
tensor.float_data.extend(result[name].reshape(-1).tolist())
else:
raise Exception("error type.")
tensor.shape.extend(list(result[name].shape))
if name in self.lod_tensor_set_:
tensor.lod.extend(result["{}.lod".format(name)].tolist())
inst.tensor_array.append(tensor)
model_output.insts.append(inst)
resp.outputs.append(model_output)
def _pack_inference_response(self, ret, fetch_names, is_python):
resp = multi_lang_general_model_service_pb2.InferenceResponse()
if ret is None:
resp.err_code = 1
return resp
results, tag = ret
resp.tag = tag
resp.err_code = 0
if not self.is_multi_model_:
results = {'general_infer_0': results}
for model_name, model_result in results.items():
model_output = multi_lang_general_model_service_pb2.ModelOutput()
inst = multi_lang_general_model_service_pb2.FetchInst()
for idx, name in enumerate(fetch_names):
tensor = multi_lang_general_model_service_pb2.Tensor()
v_type = self.fetch_types_[name]
if is_python:
tensor.data = model_result[name].tobytes()
else:
if v_type == 0: # int64
tensor.int64_data.extend(model_result[name].reshape(-1)
.tolist())
elif v_type == 1: # float32
tensor.float_data.extend(model_result[name].reshape(-1)
.tolist())
elif v_type == 2: # int32
tensor.int32_data.extend(model_result[name].reshape(-1)
.tolist())
else:
raise Exception("error type.")
tensor.shape.extend(list(model_result[name].shape))
if name in self.lod_tensor_set_:
tensor.lod.extend(model_result["{}.lod".format(name)]
.tolist())
inst.tensor_array.append(tensor)
model_output.insts.append(inst)
model_output.engine_name = model_name
resp.outputs.append(model_output)
return resp
def inference(self, request, context):
feed_dict, fetch_names, is_python = self._unpack_request(request)
data, tag = self.bclient_.predict(
def SetTimeout(self, request, context):
# This porcess and Inference process cannot be operate at the same time.
# For performance reasons, do not add thread lock temporarily.
timeout_ms = request.timeout_ms
self._init_bclient(self.model_config_path_, self.endpoints_, timeout_ms)
resp = multi_lang_general_model_service_pb2.SimpleResponse()
resp.err_code = 0
return resp
def Inference(self, request, context):
feed_dict, fetch_names, is_python = self._unpack_inference_request(
request)
ret = self.bclient_.predict(
feed=feed_dict, fetch=fetch_names, need_variant_tag=True)
return self._pack_resp_package(data, fetch_names, is_python, tag)
return self._pack_inference_response(ret, fetch_names, is_python)
def GetClientConfig(self, request, context):
resp = multi_lang_general_model_service_pb2.GetClientConfigResponse()
resp.client_config_str = self.model_config_str_
return resp
class MultiLangServer(object):
def __init__(self, worker_num=2):
def __init__(self):
self.bserver_ = Server()
self.worker_num_ = worker_num
self.worker_num_ = 4
self.body_size_ = 64 * 1024 * 1024
self.concurrency_ = 100000
self.is_multi_model_ = False # for model ensemble
def set_max_concurrency(self, concurrency):
self.concurrency_ = concurrency
self.bserver_.set_max_concurrency(concurrency)
def set_num_threads(self, threads):
self.worker_num_ = threads
self.bserver_.set_num_threads(threads)
def set_max_body_size(self, body_size):
self.bserver_.set_max_body_size(body_size)
if body_size >= self.body_size_:
self.body_size_ = body_size
else:
print(
"max_body_size is less than default value, will use default value in service."
)
def set_port(self, port):
self.gport_ = port
def set_reload_interval(self, interval):
self.bserver_.set_reload_interval(interval)
def set_op_sequence(self, op_seq):
self.bserver_.set_op_sequence(op_seq)
def load_model_config(self, model_config_path):
if not isinstance(model_config_path, str):
raise Exception(
"MultiLangServer only supports multi-model temporarily")
self.bserver_.load_model_config(model_config_path)
self.model_config_path_ = model_config_path
def set_op_graph(self, op_graph):
self.bserver_.set_op_graph(op_graph)
def set_memory_optimize(self, flag=False):
self.bserver_.set_memory_optimize(flag)
def set_ir_optimize(self, flag=False):
self.bserver_.set_ir_optimize(flag)
def set_op_sequence(self, op_seq):
self.bserver_.set_op_sequence(op_seq)
def use_mkl(self, flag):
self.bserver_.use_mkl(flag)
def load_model_config(self, server_config_paths, client_config_path=None):
self.bserver_.load_model_config(server_config_paths)
if client_config_path is None:
if isinstance(server_config_paths, dict):
self.is_multi_model_ = True
client_config_path = '{}/serving_server_conf.prototxt'.format(
list(server_config_paths.items())[0][1])
else:
client_config_path = '{}/serving_server_conf.prototxt'.format(
server_config_paths)
self.bclient_config_path_ = client_config_path
def prepare_server(self, workdir=None, port=9292, device="cpu"):
if not self._port_is_available(port):
raise SystemExit("Prot {} is already used".format(port))
default_port = 12000
self.port_list_ = []
for i in range(1000):
......@@ -568,7 +656,7 @@ class MultiLangServer(object):
break
self.bserver_.prepare_server(
workdir=workdir, port=self.port_list_[0], device=device)
self.gport_ = port
self.set_port(port)
def _launch_brpc_service(self, bserver):
bserver.run_server()
......@@ -583,12 +671,16 @@ class MultiLangServer(object):
p_bserver = Process(
target=self._launch_brpc_service, args=(self.bserver_, ))
p_bserver.start()
options = [('grpc.max_send_message_length', self.body_size_),
('grpc.max_receive_message_length', self.body_size_)]
server = grpc.server(
futures.ThreadPoolExecutor(max_workers=self.worker_num_))
futures.ThreadPoolExecutor(max_workers=self.worker_num_),
options=options,
maximum_concurrent_rpcs=self.concurrency_)
multi_lang_general_model_service_pb2_grpc.add_MultiLangGeneralModelServiceServicer_to_server(
MultiLangServerService(self.model_config_path_,
["0.0.0.0:{}".format(self.port_list_[0])]),
server)
MultiLangServerServiceServicer(
self.bclient_config_path_, self.is_multi_model_,
["0.0.0.0:{}".format(self.port_list_[0])]), server)
server.add_insecure_port('[::]:{}'.format(self.gport_))
server.start()
p_bserver.join()
......
......@@ -53,6 +53,11 @@ def parse_args(): # pylint: disable=doc-string-missing
type=int,
default=512 * 1024 * 1024,
help="Limit sizes of messages")
parser.add_argument(
"--use_multilang",
default=False,
action="store_true",
help="Use Multi-language-service")
return parser.parse_args()
......@@ -67,6 +72,7 @@ def start_standard_model(): # pylint: disable=doc-string-missing
ir_optim = args.ir_optim
max_body_size = args.max_body_size
use_mkl = args.use_mkl
use_multilang = args.use_multilang
if model == "":
print("You must specify your serving model")
......@@ -83,7 +89,11 @@ def start_standard_model(): # pylint: disable=doc-string-missing
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(general_response_op)
server = serving.Server()
server = None
if use_multilang:
server = serving.MultiLangServer()
else:
server = serving.Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(thread_num)
server.set_memory_optimize(mem_optim)
......
......@@ -68,6 +68,11 @@ def serve_args():
type=int,
default=512 * 1024 * 1024,
help="Limit sizes of messages")
parser.add_argument(
"--use_multilang",
default=False,
action="store_true",
help="Use Multi-language-service")
return parser.parse_args()
......@@ -484,22 +489,29 @@ class Server(object):
os.system(command)
class MultiLangServerService(
multi_lang_general_model_service_pb2_grpc.MultiLangGeneralModelService):
def __init__(self, model_config_path, endpoints):
class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
MultiLangGeneralModelServiceServicer):
def __init__(self, model_config_path, is_multi_model, endpoints):
self.is_multi_model_ = is_multi_model
self.model_config_path_ = model_config_path
self.endpoints_ = endpoints
with open(self.model_config_path_) as f:
self.model_config_str_ = str(f.read())
self._parse_model_config(self.model_config_str_)
self._init_bclient(self.model_config_path_, self.endpoints_)
def _init_bclient(self, model_config_path, endpoints, timeout_ms=None):
from paddle_serving_client import Client
self._parse_model_config(model_config_path)
self.bclient_ = Client()
self.bclient_.load_client_config(
"{}/serving_server_conf.prototxt".format(model_config_path))
if timeout_ms is not None:
self.bclient_.set_rpc_timeout_ms(timeout_ms)
self.bclient_.load_client_config(model_config_path)
self.bclient_.connect(endpoints)
def _parse_model_config(self, model_config_path):
def _parse_model_config(self, model_config_str):
model_conf = m_config.GeneralModelConfig()
f = open("{}/serving_server_conf.prototxt".format(model_config_path),
'r')
model_conf = google.protobuf.text_format.Merge(
str(f.read()), model_conf)
model_conf = google.protobuf.text_format.Merge(model_config_str,
model_conf)
self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
self.feed_types_ = {}
self.feed_shapes_ = {}
......@@ -524,7 +536,7 @@ class MultiLangServerService(
else:
yield item
def _unpack_request(self, request):
def _unpack_inference_request(self, request):
feed_names = list(request.feed_var_names)
fetch_names = list(request.fetch_var_names)
is_python = request.is_python
......@@ -540,6 +552,8 @@ class MultiLangServerService(
data = np.frombuffer(var.data, dtype="int64")
elif v_type == 1:
data = np.frombuffer(var.data, dtype="float32")
elif v_type == 2:
data = np.frombuffer(var.data, dtype="int32")
else:
raise Exception("error type.")
else:
......@@ -547,6 +561,8 @@ class MultiLangServerService(
data = np.array(list(var.int64_data), dtype="int64")
elif v_type == 1: # float32
data = np.array(list(var.float_data), dtype="float32")
elif v_type == 2:
data = np.array(list(var.int32_data), dtype="int32")
else:
raise Exception("error type.")
data.shape = list(feed_inst.tensor_array[idx].shape)
......@@ -554,55 +570,129 @@ class MultiLangServerService(
feed_batch.append(feed_dict)
return feed_batch, fetch_names, is_python
def _pack_resp_package(self, result, fetch_names, is_python, tag):
resp = multi_lang_general_model_service_pb2.Response()
# Only one model is supported temporarily
model_output = multi_lang_general_model_service_pb2.ModelOutput()
inst = multi_lang_general_model_service_pb2.FetchInst()
for idx, name in enumerate(fetch_names):
tensor = multi_lang_general_model_service_pb2.Tensor()
v_type = self.fetch_types_[name]
if is_python:
tensor.data = result[name].tobytes()
else:
if v_type == 0: # int64
tensor.int64_data.extend(result[name].reshape(-1).tolist())
elif v_type == 1: # float32
tensor.float_data.extend(result[name].reshape(-1).tolist())
else:
raise Exception("error type.")
tensor.shape.extend(list(result[name].shape))
if name in self.lod_tensor_set_:
tensor.lod.extend(result["{}.lod".format(name)].tolist())
inst.tensor_array.append(tensor)
model_output.insts.append(inst)
resp.outputs.append(model_output)
def _pack_inference_response(self, ret, fetch_names, is_python):
resp = multi_lang_general_model_service_pb2.InferenceResponse()
if ret is None:
resp.err_code = 1
return resp
results, tag = ret
resp.tag = tag
resp.err_code = 0
if not self.is_multi_model_:
results = {'general_infer_0': results}
for model_name, model_result in results.items():
model_output = multi_lang_general_model_service_pb2.ModelOutput()
inst = multi_lang_general_model_service_pb2.FetchInst()
for idx, name in enumerate(fetch_names):
tensor = multi_lang_general_model_service_pb2.Tensor()
v_type = self.fetch_types_[name]
if is_python:
tensor.data = model_result[name].tobytes()
else:
if v_type == 0: # int64
tensor.int64_data.extend(model_result[name].reshape(-1)
.tolist())
elif v_type == 1: # float32
tensor.float_data.extend(model_result[name].reshape(-1)
.tolist())
elif v_type == 2: # int32
tensor.int32_data.extend(model_result[name].reshape(-1)
.tolist())
else:
raise Exception("error type.")
tensor.shape.extend(list(model_result[name].shape))
if name in self.lod_tensor_set_:
tensor.lod.extend(model_result["{}.lod".format(name)]
.tolist())
inst.tensor_array.append(tensor)
model_output.insts.append(inst)
model_output.engine_name = model_name
resp.outputs.append(model_output)
return resp
def SetTimeout(self, request, context):
# This porcess and Inference process cannot be operate at the same time.
# For performance reasons, do not add thread lock temporarily.
timeout_ms = request.timeout_ms
self._init_bclient(self.model_config_path_, self.endpoints_, timeout_ms)
resp = multi_lang_general_model_service_pb2.SimpleResponse()
resp.err_code = 0
return resp
def inference(self, request, context):
feed_dict, fetch_names, is_python = self._unpack_request(request)
data, tag = self.bclient_.predict(
def Inference(self, request, context):
feed_dict, fetch_names, is_python = self._unpack_inference_request(
request)
ret = self.bclient_.predict(
feed=feed_dict, fetch=fetch_names, need_variant_tag=True)
return self._pack_resp_package(data, fetch_names, is_python, tag)
return self._pack_inference_response(ret, fetch_names, is_python)
def GetClientConfig(self, request, context):
resp = multi_lang_general_model_service_pb2.GetClientConfigResponse()
resp.client_config_str = self.model_config_str_
return resp
class MultiLangServer(object):
def __init__(self, worker_num=2):
def __init__(self):
self.bserver_ = Server()
self.worker_num_ = worker_num
self.worker_num_ = 4
self.body_size_ = 64 * 1024 * 1024
self.concurrency_ = 100000
self.is_multi_model_ = False # for model ensemble
def set_max_concurrency(self, concurrency):
self.concurrency_ = concurrency
self.bserver_.set_max_concurrency(concurrency)
def set_num_threads(self, threads):
self.worker_num_ = threads
self.bserver_.set_num_threads(threads)
def set_max_body_size(self, body_size):
self.bserver_.set_max_body_size(body_size)
if body_size >= self.body_size_:
self.body_size_ = body_size
else:
print(
"max_body_size is less than default value, will use default value in service."
)
def set_port(self, port):
self.gport_ = port
def set_reload_interval(self, interval):
self.bserver_.set_reload_interval(interval)
def set_op_sequence(self, op_seq):
self.bserver_.set_op_sequence(op_seq)
def load_model_config(self, model_config_path):
if not isinstance(model_config_path, str):
raise Exception(
"MultiLangServer only supports multi-model temporarily")
self.bserver_.load_model_config(model_config_path)
self.model_config_path_ = model_config_path
def set_op_graph(self, op_graph):
self.bserver_.set_op_graph(op_graph)
def set_memory_optimize(self, flag=False):
self.bserver_.set_memory_optimize(flag)
def set_ir_optimize(self, flag=False):
self.bserver_.set_ir_optimize(flag)
def set_gpuid(self, gpuid=0):
self.bserver_.set_gpuid(gpuid)
def load_model_config(self, server_config_paths, client_config_path=None):
self.bserver_.load_model_config(server_config_paths)
if client_config_path is None:
if isinstance(server_config_paths, dict):
self.is_multi_model_ = True
client_config_path = '{}/serving_server_conf.prototxt'.format(
list(server_config_paths.items())[0][1])
else:
client_config_path = '{}/serving_server_conf.prototxt'.format(
server_config_paths)
self.bclient_config_path_ = client_config_path
def prepare_server(self, workdir=None, port=9292, device="cpu"):
if not self._port_is_available(port):
raise SystemExit("Prot {} is already used".format(port))
default_port = 12000
self.port_list_ = []
for i in range(1000):
......@@ -612,7 +702,7 @@ class MultiLangServer(object):
break
self.bserver_.prepare_server(
workdir=workdir, port=self.port_list_[0], device=device)
self.gport_ = port
self.set_port(port)
def _launch_brpc_service(self, bserver):
bserver.run_server()
......@@ -627,12 +717,16 @@ class MultiLangServer(object):
p_bserver = Process(
target=self._launch_brpc_service, args=(self.bserver_, ))
p_bserver.start()
options = [('grpc.max_send_message_length', self.body_size_),
('grpc.max_receive_message_length', self.body_size_)]
server = grpc.server(
futures.ThreadPoolExecutor(max_workers=self.worker_num_))
futures.ThreadPoolExecutor(max_workers=self.worker_num_),
options=options,
maximum_concurrent_rpcs=self.concurrency_)
multi_lang_general_model_service_pb2_grpc.add_MultiLangGeneralModelServiceServicer_to_server(
MultiLangServerService(self.model_config_path_,
["0.0.0.0:{}".format(self.port_list_[0])]),
server)
MultiLangServerServiceServicer(
self.bclient_config_path_, self.is_multi_model_,
["0.0.0.0:{}".format(self.port_list_[0])]), server)
server.add_insecure_port('[::]:{}'.format(self.gport_))
server.start()
p_bserver.join()
......
......@@ -37,6 +37,7 @@ def start_gpu_card_model(index, gpuid, args): # pylint: disable=doc-string-miss
mem_optim = args.mem_optim
ir_optim = args.ir_optim
max_body_size = args.max_body_size
use_multilang = args.use_multilang
workdir = "{}_{}".format(args.workdir, gpuid)
if model == "":
......@@ -54,7 +55,10 @@ def start_gpu_card_model(index, gpuid, args): # pylint: disable=doc-string-miss
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(general_response_op)
server = serving.Server()
if use_multilang:
server = serving.MultiLangServer()
else:
server = serving.Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(thread_num)
server.set_memory_optimize(mem_optim)
......
......@@ -134,6 +134,7 @@ function build_server() {
function kill_server_process() {
ps -ef | grep "serving" | grep -v serving_build | grep -v grep | awk '{print $2}' | xargs kill
sleep 1
}
function python_test_fit_a_line() {
......@@ -246,6 +247,7 @@ function python_run_criteo_ctr_with_cube() {
echo "criteo_ctr_with_cube inference auc test success"
kill_server_process
ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill
sleep 1
;;
GPU)
check_cmd "wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz"
......@@ -261,6 +263,8 @@ function python_run_criteo_ctr_with_cube() {
check_cmd "mkdir work_dir1 && cp cube/conf/cube.conf ./work_dir1/"
python test_server_gpu.py ctr_serving_model_kv &
sleep 5
# for warm up
python test_client.py ctr_client_conf/serving_client_conf.prototxt ./ut_data > /dev/null || true
check_cmd "python test_client.py ctr_client_conf/serving_client_conf.prototxt ./ut_data >score"
tail -n 2 score | awk 'NR==1'
AUC=$(tail -n 2 score | awk 'NR==1')
......@@ -273,6 +277,7 @@ function python_run_criteo_ctr_with_cube() {
echo "criteo_ctr_with_cube inference auc test success"
kill_server_process
ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill
sleep 1
;;
*)
echo "error type"
......@@ -484,6 +489,7 @@ function python_test_lac() {
setproxy # recover proxy state
kill_server_process
ps -ef | grep "lac_web_service" | grep -v grep | awk '{print $2}' | xargs kill
sleep 1
echo "lac CPU HTTP inference pass"
;;
GPU)
......@@ -499,6 +505,143 @@ function python_test_lac() {
cd ..
}
function python_test_grpc_impl() {
# pwd: /Serving/python/examples
cd grpc_impl_example # pwd: /Serving/python/examples/grpc_impl_example
local TYPE=$1
export SERVING_BIN=${SERVING_WORKDIR}/build-server-${TYPE}/core/general-server/serving
unsetproxy
case $TYPE in
CPU)
# test general case
cd fit_a_line # pwd: /Serving/python/examples/grpc_impl_example/fit_a_line
sh get_data.sh
# one line command start
check_cmd "python -m paddle_serving_server.serve --model uci_housing_model --port 9393 --thread 4 --use_multilang > /dev/null &"
sleep 5 # wait for the server to start
check_cmd "python test_sync_client.py > /dev/null"
check_cmd "python test_asyn_client.py > /dev/null"
check_cmd "python test_general_pb_client.py > /dev/null"
check_cmd "python test_numpy_input_client.py > /dev/null"
check_cmd "python test_batch_client.py > /dev/null"
check_cmd "python test_timeout_client.py > /dev/null"
kill_server_process
check_cmd "python test_server.py uci_housing_model > /dev/null &"
sleep 5 # wait for the server to start
check_cmd "python test_sync_client.py > /dev/null"
check_cmd "python test_asyn_client.py > /dev/null"
check_cmd "python test_general_pb_client.py > /dev/null"
check_cmd "python test_numpy_input_client.py > /dev/null"
check_cmd "python test_batch_client.py > /dev/null"
check_cmd "python test_timeout_client.py > /dev/null"
kill_server_process
cd .. # pwd: /Serving/python/examples/grpc_impl_example
# test load server config and client config in Server side
cd criteo_ctr_with_cube # pwd: /Serving/python/examples/grpc_impl_example/criteo_ctr_with_cube
check_cmd "wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz"
check_cmd "tar xf ctr_cube_unittest.tar.gz"
check_cmd "mv models/ctr_client_conf ./"
check_cmd "mv models/ctr_serving_model_kv ./"
check_cmd "mv models/data ./cube/"
check_cmd "mv models/ut_data ./"
cp ../../../../build-server-$TYPE/output/bin/cube* ./cube/
sh cube_prepare.sh &
check_cmd "mkdir work_dir1 && cp cube/conf/cube.conf ./work_dir1/"
python test_server.py ctr_serving_model_kv ctr_client_conf/serving_client_conf.prototxt &
sleep 5
check_cmd "python test_client.py ./ut_data >score"
tail -n 2 score | awk 'NR==1'
AUC=$(tail -n 2 score | awk 'NR==1')
VAR2="0.67" #TODO: temporarily relax the threshold to 0.67
RES=$( echo "$AUC>$VAR2" | bc )
if [[ $RES -eq 0 ]]; then
echo "error with criteo_ctr_with_cube inference auc test, auc should > 0.67"
exit 1
fi
echo "grpc impl test success"
kill_server_process
ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill
cd .. # pwd: /Serving/python/examples/grpc_impl_example
;;
GPU)
export CUDA_VISIBLE_DEVICES=0
# test general case
cd fit_a_line # pwd: /Serving/python/examples/grpc_impl_example/fit_a_line
sh get_data.sh
# one line command start
check_cmd "python -m paddle_serving_server_gpu.serve --model uci_housing_model --port 9393 --thread 4 --gpu_ids 0 --use_multilang > /dev/null &"
sleep 5 # wait for the server to start
check_cmd "python test_sync_client.py > /dev/null"
check_cmd "python test_asyn_client.py > /dev/null"
check_cmd "python test_general_pb_client.py > /dev/null"
check_cmd "python test_numpy_input_client.py > /dev/null"
check_cmd "python test_batch_client.py > /dev/null"
check_cmd "python test_timeout_client.py > /dev/null"
kill_server_process
check_cmd "python test_server_gpu.py uci_housing_model > /dev/null &"
sleep 5 # wait for the server to start
check_cmd "python test_sync_client.py > /dev/null"
check_cmd "python test_asyn_client.py > /dev/null"
check_cmd "python test_general_pb_client.py > /dev/null"
check_cmd "python test_numpy_input_client.py > /dev/null"
check_cmd "python test_batch_client.py > /dev/null"
check_cmd "python test_timeout_client.py > /dev/null"
kill_server_process
ps -ef | grep "test_server_gpu" | grep -v serving_build | grep -v grep | awk '{print $2}' | xargs kill
cd .. # pwd: /Serving/python/examples/grpc_impl_example
# test load server config and client config in Server side
cd criteo_ctr_with_cube # pwd: /Serving/python/examples/grpc_impl_example/criteo_ctr_with_cube
check_cmd "wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz"
check_cmd "tar xf ctr_cube_unittest.tar.gz"
check_cmd "mv models/ctr_client_conf ./"
check_cmd "mv models/ctr_serving_model_kv ./"
check_cmd "mv models/data ./cube/"
check_cmd "mv models/ut_data ./"
cp ../../../../build-server-$TYPE/output/bin/cube* ./cube/
sh cube_prepare.sh &
check_cmd "mkdir work_dir1 && cp cube/conf/cube.conf ./work_dir1/"
python test_server_gpu.py ctr_serving_model_kv ctr_client_conf/serving_client_conf.prototxt &
sleep 5
# for warm up
python test_client.py ./ut_data &> /dev/null || true
check_cmd "python test_client.py ./ut_data >score"
tail -n 2 score | awk 'NR==1'
AUC=$(tail -n 2 score | awk 'NR==1')
VAR2="0.67" #TODO: temporarily relax the threshold to 0.67
RES=$( echo "$AUC>$VAR2" | bc )
if [[ $RES -eq 0 ]]; then
echo "error with criteo_ctr_with_cube inference auc test, auc should > 0.67"
exit 1
fi
echo "grpc impl test success"
kill_server_process
ps -ef | grep "test_server_gpu" | grep -v serving_build | grep -v grep | awk '{print $2}' | xargs kill
ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill
cd .. # pwd: /Serving/python/examples/grpc_impl_example
;;
*)
echo "error type"
exit 1
;;
esac
echo "test grpc impl $TYPE part finished as expected."
setproxy
unset SERVING_BIN
cd .. # pwd: /Serving/python/examples
}
function python_test_yolov4(){
#pwd:/ Serving/python/examples
local TYPE=$1
......@@ -546,6 +689,7 @@ function python_run_test() {
python_test_multi_process $TYPE # pwd: /Serving/python/examples
python_test_multi_fetch $TYPE # pwd: /Serving/python/examples
python_test_yolov4 $TYPE # pwd: /Serving/python/examples
python_test_grpc_impl $TYPE # pwd: /Serving/python/examples
echo "test python $TYPE part finished as expected."
cd ../.. # pwd: /Serving
}
......@@ -804,3 +948,4 @@ function main() {
}
main $@
exit 0
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册