Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
e7cd288c
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e7cd288c
编写于
3月 18, 2019
作者:
W
wangguibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add press test tool
Change-Id: I5b2a97903b761fd6fe196081b76f49f633c23ff6
上级
58063cfe
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
356 addition
and
2 deletion
+356
-2
doc/GETTING_STARTED.md
doc/GETTING_STARTED.md
+1
-1
sdk-cpp/CMakeLists.txt
sdk-cpp/CMakeLists.txt
+8
-1
sdk-cpp/demo/text_classification_press.cpp
sdk-cpp/demo/text_classification_press.cpp
+347
-0
未找到文件。
doc/GETTING_STARTED.md
浏览文件 @
e7cd288c
...
...
@@ -18,7 +18,7 @@ tail -f log/serving.INFO
Step2:启动Client端:
```
shell
cd
path/to/paddle-serving/output/demo/client/image_class
&&
./bin/ximage &
cd
path/to/paddle-serving/output/demo/client/image_class
ification
&&
./bin/ximage &
```
默认启动后日志写在./log/下,可tail日志查看分类结果:
...
...
sdk-cpp/CMakeLists.txt
浏览文件 @
e7cd288c
if
(
NOT EXISTS
${
CMAKE_CURRENT_LIST_DIR
}
/data/text_classification/test_set.txt
)
execute_process
(
COMMAND
${
CMAKE_COMMAND
}
-E make_directory
${
CMAKE_CURRENT_LIST_DIR
}
/data/text_classification
)
execute_process
(
COMMAND wget
--no-check-certificate
https://paddle-serving.bj.bcebos.com/data/text_classification/test_set.tar.gz
...
...
@@ -47,6 +49,11 @@ add_executable(text_classification
target_link_libraries
(
text_classification -Wl,--whole-archive sdk-cpp -Wl,--no-whole-archive -lpthread -lcrypto -lm -lrt -lssl -ldl
-lz
)
add_executable
(
text_classification_press
${
CMAKE_CURRENT_LIST_DIR
}
/demo/text_classification_press.cpp
)
target_link_libraries
(
text_classification_press -Wl,--whole-archive sdk-cpp -Wl,--no-whole-archive -lpthread -lcrypto -lm -lrt -lssl -ldl
-lz
)
# install
install
(
TARGETS sdk-cpp
ARCHIVE DESTINATION
${
PADDLE_SERVING_INSTALL_DIR
}
/lib
...
...
@@ -83,7 +90,7 @@ install(TARGETS int64tensor_format
install
(
DIRECTORY
${
CMAKE_CURRENT_LIST_DIR
}
/conf DESTINATION
${
PADDLE_SERVING_INSTALL_DIR
}
/demo/client/int64tensor_format/
)
install
(
TARGETS text_classification
install
(
TARGETS text_classification
text_classification_press
RUNTIME DESTINATION
${
PADDLE_SERVING_INSTALL_DIR
}
/demo/client/text_classification/bin
)
install
(
DIRECTORY
${
CMAKE_CURRENT_LIST_DIR
}
/conf DESTINATION
...
...
sdk-cpp/demo/text_classification_press.cpp
0 → 100644
浏览文件 @
e7cd288c
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <atomic>
#include <fstream>
#include <thread> // NOLINT
#include "predictor/builtin_format.pb.h"
#include "sdk-cpp/include/common.h"
#include "sdk-cpp/include/predictor_sdk.h"
#include "sdk-cpp/text_classification.pb.h"
using
baidu
::
paddle_serving
::
sdk_cpp
::
Predictor
;
using
baidu
::
paddle_serving
::
sdk_cpp
::
PredictorApi
;
using
baidu
::
paddle_serving
::
predictor
::
text_classification
::
TextReqInstance
;
using
baidu
::
paddle_serving
::
predictor
::
text_classification
::
TextResInstance
;
using
baidu
::
paddle_serving
::
predictor
::
text_classification
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
text_classification
::
Response
;
const
char
*
g_test_file
=
"./data/text_classification/test_set.txt"
;
DEFINE_int32
(
batch_size
,
50
,
"Set the batch size of test file."
);
DEFINE_int32
(
concurrency
,
1
,
"Set the max concurrent number of requests"
);
std
::
vector
<
std
::
vector
<
int64_t
>>
g_test_input
;
std
::
vector
<
int
>
g_test_label
;
std
::
vector
<
int
>
g_correct
;
std
::
vector
<
std
::
vector
<
uint64_t
>>
g_round_time
;
std
::
atomic
<
int
>
g_concurrency
(
0
);
// Text Classification Data Feed
//
// Input format:
// ([termid list], truth_label)
// Where 'termid list' is a variant length id list, `truth label` is a single
// number (0 or 1)
//
const
int
MAX_LINE_SIZE
=
1024
*
1024
;
std
::
vector
<
std
::
vector
<
int
>>
g_pred_labels
;
const
float
g_decision_boundary
=
0.500
;
class
DataFeed
{
public:
virtual
~
DataFeed
()
{}
virtual
void
init
(
std
::
vector
<
std
::
vector
<
int64_t
>>
*
test_input
,
std
::
vector
<
int
>
*
test_label
);
std
::
vector
<
std
::
vector
<
int64_t
>>
*
get_test_input
()
{
return
_test_input
;
}
std
::
vector
<
int
>
*
get_labels
()
{
return
_test_label
;
}
uint32_t
sample_id
()
{
return
_current_sample_id
;
}
void
set_sample_id
(
uint32_t
sample_id
)
{
_current_sample_id
=
sample_id
;
}
private:
std
::
vector
<
std
::
vector
<
int64_t
>>
*
_test_input
;
std
::
vector
<
int
>
*
_test_label
;
uint32_t
_current_sample_id
;
int
_batch_size
;
};
void
DataFeed
::
init
(
std
::
vector
<
std
::
vector
<
int64_t
>>
*
test_input
,
std
::
vector
<
int
>
*
test_label
)
{
_test_input
=
test_input
;
_test_label
=
test_label
;
}
bool
set_file
(
const
char
*
filename
)
{
std
::
ifstream
ifs
(
filename
);
char
*
line
=
new
char
[
MAX_LINE_SIZE
];
int
len
=
0
;
char
*
sequence_begin_ptr
=
NULL
;
char
*
sequence_end_ptr
=
NULL
;
char
*
id_begin_ptr
=
NULL
;
char
*
id_end_ptr
=
NULL
;
char
*
label_ptr
=
NULL
;
int
label
=
-
1
;
int
id
=
-
1
;
while
(
!
ifs
.
eof
())
{
std
::
vector
<
int64_t
>
vec
;
ifs
.
getline
(
line
,
MAX_LINE_SIZE
);
len
=
strlen
(
line
);
if
(
line
[
0
]
!=
'('
||
line
[
len
-
1
]
!=
')'
)
{
continue
;
}
line
[
len
-
1
]
=
'\0'
;
sequence_begin_ptr
=
strchr
(
line
,
'('
)
+
1
;
if
(
*
sequence_begin_ptr
!=
'['
)
{
continue
;
}
sequence_end_ptr
=
strchr
(
sequence_begin_ptr
,
']'
);
if
(
sequence_end_ptr
==
NULL
)
{
continue
;
}
*
sequence_end_ptr
=
'\0'
;
id_begin_ptr
=
sequence_begin_ptr
;
while
(
id_begin_ptr
!=
NULL
)
{
id_begin_ptr
++
;
id_end_ptr
=
strchr
(
id_begin_ptr
,
','
);
if
(
id_end_ptr
!=
NULL
)
{
*
id_end_ptr
=
'\0'
;
}
id
=
atoi
(
id_begin_ptr
);
id_begin_ptr
=
id_end_ptr
;
vec
.
push_back
(
id
);
}
label_ptr
=
strchr
(
sequence_end_ptr
+
1
,
','
);
if
(
label_ptr
==
NULL
)
{
continue
;
}
*
label_ptr
=
'\0'
;
label_ptr
++
;
label
=
atoi
(
label_ptr
);
g_test_input
.
push_back
(
vec
);
g_test_label
.
push_back
(
label
);
}
ifs
.
close
();
std
::
cout
<<
"read record"
<<
g_test_input
.
size
()
<<
std
::
endl
;
return
0
;
}
int
create_req
(
std
::
shared_ptr
<
DataFeed
>
data_feed
,
Request
*
req
)
{
// NOLINT
std
::
vector
<
std
::
vector
<
int64_t
>>
*
inputs
=
data_feed
->
get_test_input
();
uint32_t
current_sample_id
=
data_feed
->
sample_id
();
int
idx
=
0
;
for
(
idx
=
0
;
idx
<
FLAGS_batch_size
&&
current_sample_id
+
idx
<
inputs
->
size
();
++
idx
)
{
TextReqInstance
*
req_instance
=
req
->
add_instances
();
std
::
vector
<
int64_t
>
&
sample
=
inputs
->
at
(
current_sample_id
+
idx
);
for
(
auto
x
:
sample
)
{
req_instance
->
add_ids
(
x
);
}
}
if
(
idx
<
FLAGS_batch_size
)
{
return
-
1
;
}
data_feed
->
set_sample_id
(
current_sample_id
+
FLAGS_batch_size
);
return
0
;
}
void
extract_res
(
const
Request
&
req
,
const
Response
&
res
,
int
thread_id
)
{
uint32_t
sample_size
=
res
.
predictions_size
();
std
::
string
err_string
;
for
(
uint32_t
si
=
0
;
si
<
sample_size
;
++
si
)
{
const
TextResInstance
&
res_instance
=
res
.
predictions
(
si
);
if
(
res_instance
.
class_1_prob
()
<
g_decision_boundary
)
{
g_pred_labels
[
thread_id
].
push_back
(
0
);
}
else
if
(
res_instance
.
class_1_prob
()
>=
g_decision_boundary
)
{
g_pred_labels
[
thread_id
].
push_back
(
1
);
}
}
}
void
thread_worker
(
PredictorApi
*
api
,
int
thread_id
)
{
std
::
shared_ptr
<
DataFeed
>
local_feed
(
new
DataFeed
());
local_feed
->
init
(
&
g_test_input
,
&
g_test_label
);
Request
req
;
Response
res
;
api
->
thrd_initialize
();
while
(
true
)
{
api
->
thrd_clear
();
req
.
Clear
();
res
.
Clear
();
Predictor
*
predictor
=
api
->
fetch_predictor
(
"text_classification"
);
if
(
!
predictor
)
{
LOG
(
ERROR
)
<<
"Failed fetch predictor: text_classification"
;
return
;
}
if
(
create_req
(
local_feed
,
&
req
)
!=
0
)
{
break
;
}
while
(
g_concurrency
.
load
()
>=
FLAGS_concurrency
)
{
}
g_concurrency
++
;
#if 1
LOG
(
INFO
)
<<
"Currenent concurrency "
<<
g_concurrency
.
load
();
#endif
timeval
start
;
timeval
end
;
gettimeofday
(
&
start
,
NULL
);
if
(
predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req:"
<<
req
.
ShortDebugString
();
return
;
}
gettimeofday
(
&
end
,
NULL
);
g_round_time
[
thread_id
].
push_back
(
end
.
tv_sec
*
1000
+
end
.
tv_usec
/
1000
-
start
.
tv_sec
*
1000
-
start
.
tv_usec
/
1000
);
extract_res
(
req
,
res
,
thread_id
);
g_concurrency
--
;
#if 1
LOG
(
INFO
)
<<
"Done. Current concurrency "
<<
g_concurrency
.
load
();
#endif
// res will be returned in callback
usleep
(
50
);
}
// while (true)
std
::
vector
<
int
>
*
truth_label
=
local_feed
->
get_labels
();
for
(
int
i
=
0
;
i
<
g_pred_labels
[
thread_id
].
size
();
++
i
)
{
if
(
g_pred_labels
[
thread_id
][
i
]
==
truth_label
->
at
(
i
))
{
++
g_correct
[
thread_id
];
}
}
api
->
thrd_finalize
();
}
int
main
(
int
argc
,
char
**
argv
)
{
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
PredictorApi
api
;
// initialize logger instance
struct
stat
st_buf
;
int
ret
=
0
;
if
((
ret
=
stat
(
"./log"
,
&
st_buf
))
!=
0
)
{
mkdir
(
"./log"
,
0777
);
ret
=
stat
(
"./log"
,
&
st_buf
);
if
(
ret
!=
0
)
{
LOG
(
WARNING
)
<<
"Log path ./log not exist, and create fail"
;
return
-
1
;
}
}
FLAGS_log_dir
=
"./log"
;
google
::
InitGoogleLogging
(
strdup
(
argv
[
0
]));
FLAGS_logbufsecs
=
0
;
FLAGS_logbuflevel
=
-
1
;
g_pred_labels
.
resize
(
FLAGS_concurrency
);
g_correct
.
resize
(
FLAGS_concurrency
);
g_round_time
.
resize
(
FLAGS_concurrency
);
set_file
(
g_test_file
);
if
(
api
.
create
(
"./conf"
,
"predictors.prototxt"
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed create predictors api!"
;
return
-
1
;
}
uint64_t
elapse_ms
=
0
;
timeval
start
;
gettimeofday
(
&
start
,
NULL
);
std
::
vector
<
std
::
thread
*>
worker_threads
;
int
i
=
0
;
for
(;
i
<
FLAGS_concurrency
;
++
i
)
{
worker_threads
.
push_back
(
new
std
::
thread
(
thread_worker
,
&
api
,
i
));
}
for
(
i
=
0
;
i
<
FLAGS_concurrency
;
++
i
)
{
worker_threads
[
i
]
->
join
();
delete
worker_threads
[
i
];
}
timeval
end
;
gettimeofday
(
&
end
,
NULL
);
api
.
destroy
();
elapse_ms
=
(
end
.
tv_sec
*
1000
+
end
.
tv_usec
/
1000
)
-
(
start
.
tv_sec
*
1000
+
start
.
tv_usec
/
1000
);
uint64_t
count
=
0
;
uint64_t
correct
=
0
;
for
(
int
i
=
0
;
i
<
FLAGS_concurrency
;
++
i
)
{
count
+=
g_pred_labels
[
i
].
size
();
correct
+=
g_correct
[
i
];
}
std
::
vector
<
uint64_t
>
round_times
;
for
(
auto
x
:
g_round_time
)
{
round_times
.
insert
(
round_times
.
end
(),
x
.
begin
(),
x
.
end
());
}
std
::
sort
(
round_times
.
begin
(),
round_times
.
end
());
int
percent_pos_50
=
round_times
.
size
()
*
0.5
;
int
percent_pos_80
=
round_times
.
size
()
*
0.8
;
int
percent_pos_90
=
round_times
.
size
()
*
0.9
;
int
percent_pos_99
=
round_times
.
size
()
*
0.99
;
int
percent_pos_999
=
round_times
.
size
()
*
0.999
;
uint64_t
total_ms
=
0
;
for
(
auto
x
:
round_times
)
{
total_ms
+=
x
;
}
LOG
(
INFO
)
<<
"Total requests: "
<<
round_times
.
size
();
LOG
(
INFO
)
<<
"Max concurrency: "
<<
FLAGS_concurrency
;
LOG
(
INFO
)
<<
"Elapse ms (wall-time): "
<<
elapse_ms
;
double
qps
=
(
static_cast
<
double
>
(
count
)
/
elapse_ms
)
*
1000
;
LOG
(
INFO
)
<<
"QPS: "
<<
qps
/
FLAGS_batch_size
<<
"/s"
;
LOG
(
INFO
)
<<
"Accuracy "
<<
static_cast
<
double
>
(
correct
)
/
count
;
LOG
(
INFO
)
<<
"Latency statistics: "
;
LOG
(
INFO
)
<<
"Average ms: "
<<
total_ms
/
round_times
.
size
();
LOG
(
INFO
)
<<
"50 percent ms: "
<<
round_times
[
percent_pos_50
];
LOG
(
INFO
)
<<
"80 percent ms: "
<<
round_times
[
percent_pos_80
];
LOG
(
INFO
)
<<
"90 percent ms: "
<<
round_times
[
percent_pos_90
];
LOG
(
INFO
)
<<
"99 percent ms: "
<<
round_times
[
percent_pos_99
];
LOG
(
INFO
)
<<
"99.9 percent ms: "
<<
round_times
[
percent_pos_999
];
return
0
;
}
/* vim: set expandtab ts=4 sw=4 sts=4 tw=100: */
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录