提交 daf01c93 编写于 作者: B barriery 提交者: GitHub

Merge pull request #534 from barrierye/fix-doc-for-v0.2.1

fix doc(HTTP interface changed due to v0.2.1)
......@@ -53,12 +53,6 @@ pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple
### Test example
Before running the GPU version of the Server side code, you need to set the `CUDA_VISIBLE_DEVICES` environment variable to specify which GPUs the prediction service uses. The following example specifies two GPUs with indexes 0 and 1:
```bash
export CUDA_VISIBLE_DEVICES=0,1
```
Get the trained Boston house price prediction model by the following command:
```bash
......@@ -71,13 +65,13 @@ tar -xzf uci_housing.tar.gz
Running on the Server side (inside the container):
```bash
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci &>std.log 2>err.log &
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci >std.log 2>err.log &
```
Running on the Client side (inside or outside the container):
```bash
curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
curl -H "Content-Type:application/json" -X POST -d '{"feed":{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}, "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
- Test RPC service
......@@ -85,7 +79,7 @@ tar -xzf uci_housing.tar.gz
Running on the Server side (inside the container):
```bash
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 &>std.log 2>err.log &
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 >std.log 2>err.log &
```
Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):
......@@ -176,7 +170,7 @@ tar -xzf uci_housing.tar.gz
Running on the Client side (inside or outside the container):
```bash
curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
curl -H "Content-Type:application/json" -X POST -d '{"feed":{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}, "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
- Test RPC service
......
......@@ -65,13 +65,13 @@ tar -xzf uci_housing.tar.gz
在Server端(容器内)运行:
```bash
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci &>std.log 2>err.log &
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci >std.log 2>err.log &
```
在Client端(容器内或容器外)运行:
```bash
curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
curl -H "Content-Type:application/json" -X POST -d '{"feed":{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}, "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
- 测试RPC服务
......@@ -79,7 +79,7 @@ tar -xzf uci_housing.tar.gz
在Server端(容器内)运行:
```bash
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 &>std.log 2>err.log &
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 >std.log 2>err.log &
```
在Client端(容器内或容器外,需要安装`paddle-serving-client`包)运行下面Python代码:
......@@ -168,7 +168,7 @@ tar -xzf uci_housing.tar.gz
在Client端(容器内或容器外)运行:
```bash
curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
curl -H "Content-Type:application/json" -X POST -d '{"feed":{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}, "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
- 测试RPC服务
......
......@@ -350,12 +350,12 @@ In the above command, the first parameter is the saved server-side model and con
After starting the HTTP prediction service, you can make prediction with a single command:
```
curl -H "Content-Type: application/json" -X POST -d '{"words": "i am very sad | 0", "fetch": ["prediction"]}' http://127.0.0.1:9292/imdb/prediction
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "i am very sad | 0"}], "fetch":["prediction"]}' http://127.0.0.1:9292/imdb/prediction
```
When the inference process is normal, the prediction probability is returned, as shown below.
```
{"prediction": [0.5592559576034546,0.44074398279190063]}
{"result":{"prediction":[[0.4389057457447052,0.561094343662262]]}}
```
**Note**: The effect of each model training may be slightly different, and the inferred probability value using the trained model may not be consistent with the example.
......@@ -353,12 +353,12 @@ python text_classify_service.py imdb_cnn_model/ workdir/ 9292 imdb.vocab
启动完HTTP预测服务,即可通过一行命令进行预测:
```
curl -H "Content-Type:application/json" -X POST -d '{"words": "i am very sad | 0", "fetch":["prediction"]}' http://127.0.0.1:9292/imdb/prediction
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "i am very sad | 0"}], "fetch":["prediction"]}' http://127.0.0.1:9292/imdb/prediction
```
预测流程正常时,会返回预测概率,示例如下。
```
{"prediction":[0.5592559576034546,0.44074398279190063]}
{"result":{"prediction":[[0.4389057457447052,0.561094343662262]]}}
```
**注意**:每次模型训练的效果可能略有不同,使用训练出的模型预测概率数值可能与示例不一致。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册