未验证 提交 d9d0f454 编写于 作者: D Dong Daxiang 提交者: GitHub

Merge branch 'develop' into image-reader

rm profile_log rm profile_log*
export CUDA_VISIBLE_DEVICES=0,1,2,3 export CUDA_VISIBLE_DEVICES=0,1,2,3
export FLAGS_profile_server=1 export FLAGS_profile_server=1
export FLAGS_profile_client=1 export FLAGS_profile_client=1
export FLAGS_serving_latency=1 export FLAGS_serving_latency=1
python3 -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim --ir_optim 2> elog > stdlog &
hostname=`echo $(hostname)|awk -F '.baidu.com' '{print $1}'`
sleep 5
gpu_id=0 gpu_id=0
#save cpu and gpu utilization log
if [ -d utilization ];then
rm -rf utilization
else
mkdir utilization
fi
#start server
$PYTHONROOT/bin/python3 -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim --ir_optim > elog 2>&1 &
sleep 5
#warm up #warm up
python3 benchmark.py --thread 8 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 $PYTHONROOT/bin/python3 benchmark.py --thread 4 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo -e "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py
for thread_num in 4 8 16 for thread_num in 1 4 8 16
do do
for batch_size in 1 4 16 64 256 for batch_size in 1 4 16 64
do do
job_bt=`date '+%Y%m%d%H%M%S'` job_bt=`date '+%Y%m%d%H%M%S'`
nvidia-smi --id=$gpu_id --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & nvidia-smi --id=0 --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 &
nvidia-smi --id=0 --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 &
gpu_memory_pid=$! gpu_memory_pid=$!
python3 benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 $PYTHONROOT/bin/python3 benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
kill ${gpu_memory_pid} kill ${gpu_memory_pid}
kill `ps -ef|grep used_memory|awk '{print $2}'`
echo "model_name:" $1 echo "model_name:" $1
echo "thread_num:" $thread_num echo "thread_num:" $thread_num
echo "batch_size:" $batch_size echo "batch_size:" $batch_size
echo "=================Done====================" echo "=================Done===================="
echo "model_name:$1" >> profile_log_$1 echo "model_name:$1" >> profile_log_$1
echo "batch_size:$batch_size" >> profile_log_$1 echo "batch_size:$batch_size" >> profile_log_$1
$PYTHONROOT/bin/python3 cpu_utilization.py >> profile_log_$1
job_et=`date '+%Y%m%d%H%M%S'` job_et=`date '+%Y%m%d%H%M%S'`
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY_USE:", max}' gpu_use.log >> profile_log_$1 awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}' gpu_use.log >> profile_log_$1
monquery -n ${hostname} -i GPU_AVERAGE_UTILIZATION -s $job_bt -e $job_et -d 10 > gpu_log_file_${job_bt} awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}' gpu_utilization.log >> profile_log_$1
monquery -n ${hostname} -i CPU_USER -s $job_bt -e $job_et -d 10 > cpu_log_file_${job_bt} rm -rf gpu_use.log gpu_utilization.log
cpu_num=$(cat /proc/cpuinfo | grep processor | wc -l) $PYTHONROOT/bin/python3 ../util/show_profile.py profile $thread_num >> profile_log_$1
gpu_num=$(nvidia-smi -L|wc -l)
python ../util/show_profile.py profile $thread_num >> profile_log_$1
tail -n 8 profile >> profile_log_$1 tail -n 8 profile >> profile_log_$1
echo "" >> profile_log_$1 echo "" >> profile_log_$1
done done
done done
#Divided log
awk 'BEGIN{RS="\n\n"}{i++}{print > "bert_log_"i}' profile_log_$1
mkdir bert_log && mv bert_log_* bert_log
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9 ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
rm profile_log rm profile_log*
export CUDA_VISIBLE_DEVICES=0,1,2,3 export CUDA_VISIBLE_DEVICES=0,1,2,3
export FLAGS_profile_server=1 export FLAGS_profile_server=1
export FLAGS_profile_client=1 export FLAGS_profile_client=1
python -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim --ir_optim 2> elog > stdlog & python -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim --ir_optim 2> elog > stdlog &
sleep 5 sleep 5
gpu_id=0
#save cpu and gpu utilization log
if [ -d utilization ];then
rm -rf utilization
else
mkdir utilization
fi
#warm up #warm up
$PYTHONROOT/bin/python benchmark.py --thread 8 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 $PYTHONROOT/bin/python3 benchmark.py --thread 4 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo -e "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py
for thread_num in 1 4 8 16 for thread_num in 1 4 8 16
do do
for batch_size in 1 4 16 64 for batch_size in 1 4 16 64
do do
job_bt=`date '+%Y%m%d%H%M%S'`
nvidia-smi --id=0 --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 &
nvidia-smi --id=0 --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 &
gpu_memory_pid=$!
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 $PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
kill ${gpu_memory_pid}
kill `ps -ef|grep used_memory|awk '{print $2}'`
echo "model name :" $1 echo "model name :" $1
echo "thread num :" $thread_num echo "thread num :" $thread_num
echo "batch size :" $batch_size echo "batch size :" $batch_size
echo "=================Done====================" echo "=================Done===================="
echo "model name :$1" >> profile_log echo "model name :$1" >> profile_log
echo "batch size :$batch_size" >> profile_log echo "batch size :$batch_size" >> profile_log
job_et=`date '+%Y%m%d%H%M%S'`
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}' gpu_use.log >> profile_log_$1
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}' gpu_utilization.log >> profile_log_$1
rm -rf gpu_use.log gpu_utilization.log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log $PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 8 profile >> profile_log tail -n 8 profile >> profile_log
echo "" >> profile_log_$1
done done
done done
#Divided log
awk 'BEGIN{RS="\n\n"}{i++}{print > "ResNet_log_"i}' profile_log_$1
mkdir $1_log && mv ResNet_log_* $1_log
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9 ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
rm profile_log rm profile_log*
export CUDA_VISIBLE_DEVICES=0,1,2,3
export FLAGS_profile_server=1 export FLAGS_profile_server=1
export FLAGS_profile_client=1 export FLAGS_profile_client=1
export FLAGS_serving_latency=1 export FLAGS_serving_latency=1
python -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim --ir_optim 2> elog > stdlog & $PYTHONROOT/bin/python3 -m paddle_serving_server.serve --model $1 --port 9292 --thread 4 --mem_optim --ir_optim 2> elog > stdlog &
hostname=`echo $(hostname)|awk -F '.baidu.com' '{print $1}'` hostname=`echo $(hostname)|awk -F '.baidu.com' '{print $1}'`
#save cpu and gpu utilization log
if [ -d utilization ];then
rm -rf utilization
else
mkdir utilization
fi
sleep 5 sleep 5
#warm up
$PYTHONROOT/bin/python3 benchmark.py --thread 4 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo -e "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py
for thread_num in 1 4 8 16 for thread_num in 1 4 8 16
do do
for batch_size in 1 4 16 64 for batch_size in 1 4 16 64
do do
job_bt=`date '+%Y%m%d%H%M%S'` job_bt=`date '+%Y%m%d%H%M%S'`
python benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 $PYTHONROOT/bin/python3 benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "model_name:" $1 echo "model_name:" $1
echo "thread_num:" $thread_num echo "thread_num:" $thread_num
echo "batch_size:" $batch_size echo "batch_size:" $batch_size
...@@ -21,15 +30,14 @@ do ...@@ -21,15 +30,14 @@ do
echo "model_name:$1" >> profile_log_$1 echo "model_name:$1" >> profile_log_$1
echo "batch_size:$batch_size" >> profile_log_$1 echo "batch_size:$batch_size" >> profile_log_$1
job_et=`date '+%Y%m%d%H%M%S'` job_et=`date '+%Y%m%d%H%M%S'`
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY_USE:", max}' gpu_use.log >> profile_log_$1 $PYTHONROOT/bin/python3 ../util/show_profile.py profile $thread_num >> profile_log_$1
monquery -n ${hostname} -i GPU_AVERAGE_UTILIZATION -s $job_bt -e $job_et -d 10 > gpu_log_file_${job_bt} $PYTHONROOT/bin/python3 cpu_utilization.py >> profile_log_$1
monquery -n ${hostname} -i CPU_USER -s $job_bt -e $job_et -d 10 > cpu_log_file_${job_bt}
cpu_num=$(cat /proc/cpuinfo | grep processor | wc -l)
gpu_num=$(nvidia-smi -L|wc -l)
python ../util/show_profile.py profile $thread_num >> profile_log_$1
tail -n 8 profile >> profile_log_$1 tail -n 8 profile >> profile_log_$1
echo "" >> profile_log_$1 echo "" >> profile_log_$1
done done
done done
#Divided log
awk 'BEGIN{RS="\n\n"}{i++}{print > "imdb_log_"i}' profile_log_$1
mkdir $1_log && mv imdb_log_* $1_log
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9 ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
...@@ -692,7 +692,7 @@ class Resize(object): ...@@ -692,7 +692,7 @@ class Resize(object):
Args: Args:
size (sequence or int): Desired output size. If size is a sequence like size (sequence or int): Desired output size. If size is a sequence like
(h, w), output size will be matched to this. If size is an int, (w, h), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number. smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to i.e, if height > width, then image will be rescaled to
(size * height / width, size) (size * height / width, size)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册