Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
d99c9bc3
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d99c9bc3
编写于
5月 08, 2020
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into compatible
sync
上级
cadcd593
d46152fb
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
918 addition
and
106 deletion
+918
-106
core/sdk-cpp/include/endpoint_config.h
core/sdk-cpp/include/endpoint_config.h
+15
-15
python/examples/deeplabv3/N0060.jpg
python/examples/deeplabv3/N0060.jpg
+0
-0
python/examples/deeplabv3/deeplabv3_client.py
python/examples/deeplabv3/deeplabv3_client.py
+34
-0
python/examples/faster_rcnn_model/label_list.txt
python/examples/faster_rcnn_model/label_list.txt
+81
-0
python/examples/faster_rcnn_model/new_test_client.py
python/examples/faster_rcnn_model/new_test_client.py
+43
-0
python/examples/imagenet/image_rpc_client.py
python/examples/imagenet/image_rpc_client.py
+9
-7
python/examples/mobilenet/daisy.jpg
python/examples/mobilenet/daisy.jpg
+0
-0
python/examples/mobilenet/mobilenet_tutorial.py
python/examples/mobilenet/mobilenet_tutorial.py
+32
-0
python/examples/resnet_v2_50/daisy.jpg
python/examples/resnet_v2_50/daisy.jpg
+0
-0
python/examples/resnet_v2_50/resnet50_v2_tutorial.py
python/examples/resnet_v2_50/resnet50_v2_tutorial.py
+32
-0
python/examples/unet_for_image_seg/N0060.jpg
python/examples/unet_for_image_seg/N0060.jpg
+0
-0
python/examples/unet_for_image_seg/seg_client.py
python/examples/unet_for_image_seg/seg_client.py
+33
-0
python/paddle_serving_app/__init__.py
python/paddle_serving_app/__init__.py
+1
-1
python/paddle_serving_app/models/model_list.py
python/paddle_serving_app/models/model_list.py
+37
-66
python/paddle_serving_app/package.py
python/paddle_serving_app/package.py
+23
-5
python/paddle_serving_app/reader/__init__.py
python/paddle_serving_app/reader/__init__.py
+1
-0
python/paddle_serving_app/reader/daisy.jpg
python/paddle_serving_app/reader/daisy.jpg
+0
-0
python/paddle_serving_app/reader/functional.py
python/paddle_serving_app/reader/functional.py
+68
-0
python/paddle_serving_app/reader/image_reader.py
python/paddle_serving_app/reader/image_reader.py
+464
-1
python/paddle_serving_app/reader/test_image_reader.py
python/paddle_serving_app/reader/test_image_reader.py
+30
-0
python/paddle_serving_app/version.py
python/paddle_serving_app/version.py
+1
-1
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+5
-1
python/paddle_serving_client/version.py
python/paddle_serving_client/version.py
+3
-3
python/paddle_serving_server/version.py
python/paddle_serving_server/version.py
+3
-3
python/paddle_serving_server_gpu/version.py
python/paddle_serving_server_gpu/version.py
+3
-3
未找到文件。
core/sdk-cpp/include/endpoint_config.h
浏览文件 @
d99c9bc3
...
...
@@ -22,23 +22,23 @@ namespace baidu {
namespace
paddle_serving
{
namespace
sdk_cpp
{
#define PARSE_CONF_ITEM(conf, item, name, fail)
\
do {
\
if (conf.has_##name()) {
\
item.set(conf.name());
\
} else {
\
LOG(ERROR
) << "Not found key in configue: " << #name; \
}
\
#define PARSE_CONF_ITEM(conf, item, name, fail) \
do { \
if (conf.has_##name()) { \
item.set(conf.name()); \
} else { \
VLOG(2
) << "Not found key in configue: " << #name; \
} \
} while (0)
#define ASSIGN_CONF_ITEM(dest, src, fail)
\
do {
\
if (!src.init) {
\
LOG(ERROR
) << "Cannot assign an unintialized item: " << #src \
<< " to dest: " << #dest; \
return fail;
\
}
\
dest = src.value;
\
#define ASSIGN_CONF_ITEM(dest, src, fail) \
do { \
if (!src.init) { \
VLOG(2
) << "Cannot assign an unintialized item: " << #src \
<< " to dest: " << #dest; \
return fail; \
} \
dest = src.value; \
} while (0)
template
<
typename
T
>
...
...
python/examples/deeplabv3/N0060.jpg
0 → 100644
浏览文件 @
d99c9bc3
48.4 KB
python/examples/deeplabv3/deeplabv3_client.py
0 → 100644
浏览文件 @
d99c9bc3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
Sequential
,
File2Image
,
Resize
,
Transpose
,
BGR2RGB
,
SegPostprocess
import
sys
import
cv2
client
=
Client
()
client
.
load_client_config
(
"seg_client/serving_client_conf.prototxt"
)
client
.
connect
([
"127.0.0.1:9494"
])
preprocess
=
Sequential
(
[
File2Image
(),
Resize
(
(
512
,
512
),
interpolation
=
cv2
.
INTER_LINEAR
)])
postprocess
=
SegPostprocess
(
2
)
filename
=
"N0060.jpg"
im
=
preprocess
(
filename
)
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
},
fetch
=
[
"output"
])
fetch_map
[
"filename"
]
=
filename
postprocess
(
fetch_map
)
python/examples/faster_rcnn_model/label_list.txt
0 → 100644
浏览文件 @
d99c9bc3
background
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
python/examples/faster_rcnn_model/new_test_client.py
0 → 100755
浏览文件 @
d99c9bc3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
import
sys
from
paddle_serving_app.reader.pddet
import
Detection
from
paddle_serving_app.reader
import
File2Image
,
Sequential
,
Normalize
,
Resize
,
Transpose
,
Div
,
BGR2RGB
,
RCNNPostprocess
import
numpy
as
np
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Div
(
255.0
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
False
),
Resize
(
640
,
640
),
Transpose
((
2
,
0
,
1
))
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
client
=
Client
()
client
.
load_client_config
(
sys
.
argv
[
1
])
client
.
connect
([
'127.0.0.1:9393'
])
for
i
in
range
(
100
):
im
=
preprocess
(
sys
.
argv
[
2
])
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"im_info"
:
np
.
array
(
list
(
im
.
shape
[
1
:])
+
[
1.0
]),
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])
+
[
1.0
])
},
fetch
=
[
"multiclass_nms"
])
fetch_map
[
"image"
]
=
sys
.
argv
[
2
]
postprocess
(
fetch_map
)
python/examples/imagenet/image_rpc_client.py
浏览文件 @
d99c9bc3
...
...
@@ -13,22 +13,24 @@
# limitations under the License.
import
sys
from
image_reader
import
ImageReader
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
Sequential
,
File2Image
,
Resize
,
CenterCrop
,
RGB2BGR
,
Transpose
,
Div
,
Normalize
import
time
client
=
Client
()
client
.
load_client_config
(
sys
.
argv
[
1
])
client
.
connect
([
"127.0.0.1:9393"
])
reader
=
ImageReader
()
seq
=
Sequential
([
File2Image
(),
Resize
(
256
),
CenterCrop
(
224
),
RGB2BGR
(),
Transpose
((
2
,
0
,
1
)),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
])
])
print
(
seq
)
start
=
time
.
time
()
image_file
=
"daisy.jpg"
for
i
in
range
(
1000
):
with
open
(
"./data/n01440764_10026.JPEG"
,
"rb"
)
as
f
:
img
=
f
.
read
()
img
=
reader
.
process_image
(
img
)
img
=
seq
(
image_file
)
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
img
},
fetch
=
[
"score"
])
end
=
time
.
time
()
print
(
end
-
start
)
#print(fetch_map["score"])
python/examples/mobilenet/daisy.jpg
0 → 100644
浏览文件 @
d99c9bc3
38.8 KB
python/examples/mobilenet/mobilenet_tutorial.py
0 → 100644
浏览文件 @
d99c9bc3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
Sequential
,
File2Image
,
Resize
from
paddle_serving_app.reader
import
CenterCrop
,
RGB2BGR
,
Transpose
,
Div
,
Normalize
client
=
Client
()
client
.
load_client_config
(
"mobilenet_v2_imagenet_client/serving_client_conf.prototxt"
)
client
.
connect
([
"127.0.0.1:9393"
])
seq
=
Sequential
([
File2Image
(),
Resize
(
256
),
CenterCrop
(
224
),
RGB2BGR
(),
Transpose
((
2
,
0
,
1
)),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
)
])
image_file
=
"daisy.jpg"
img
=
seq
(
image_file
)
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
img
},
fetch
=
[
"feature_map"
])
print
(
fetch_map
[
"feature_map"
].
reshape
(
-
1
))
python/examples/resnet_v2_50/daisy.jpg
0 → 100644
浏览文件 @
d99c9bc3
38.8 KB
python/examples/resnet_v2_50/resnet50_v2_tutorial.py
0 → 100644
浏览文件 @
d99c9bc3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
Sequential
,
File2Image
,
Resize
,
CenterCrop
from
apddle_serving_app.reader
import
RGB2BGR
,
Transpose
,
Div
,
Normalize
client
=
Client
()
client
.
load_client_config
(
"resnet_v2_50_imagenet_client/serving_client_conf.prototxt"
)
client
.
connect
([
"127.0.0.1:9393"
])
seq
=
Sequential
([
File2Image
(),
Resize
(
256
),
CenterCrop
(
224
),
RGB2BGR
(),
Transpose
((
2
,
0
,
1
)),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
)
])
image_file
=
"daisy.jpg"
img
=
seq
(
image_file
)
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
img
},
fetch
=
[
"feature_map"
])
print
(
fetch_map
[
"feature_map"
].
reshape
(
-
1
))
python/examples/unet_for_image_seg/N0060.jpg
0 → 100644
浏览文件 @
d99c9bc3
48.4 KB
python/examples/unet_for_image_seg/seg_client.py
0 → 100644
浏览文件 @
d99c9bc3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
Sequential
,
File2Image
,
Resize
,
Transpose
,
BGR2RGB
,
SegPostprocess
import
sys
import
cv2
client
=
Client
()
client
.
load_client_config
(
"unet_client/serving_client_conf.prototxt"
)
client
.
connect
([
"127.0.0.1:9494"
])
preprocess
=
Sequential
(
[
File2Image
(),
Resize
(
(
512
,
512
),
interpolation
=
cv2
.
INTER_LINEAR
)])
postprocess
=
SegPostprocess
(
2
)
im
=
preprocess
(
"N0060.jpg"
)
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
},
fetch
=
[
"output"
])
fetch_map
[
"filename"
]
=
filename
postprocess
(
fetch_map
)
python/paddle_serving_app/__init__.py
浏览文件 @
d99c9bc3
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
.reader.chinese_bert_reader
import
ChineseBertReader
from
.reader.image_reader
import
ImageReader
from
.reader.image_reader
import
ImageReader
,
File2Image
,
URL2Image
,
Sequential
,
Normalize
,
CenterCrop
,
Resize
from
.reader.lac_reader
import
LACReader
from
.reader.senta_reader
import
SentaReader
from
.models
import
ServingModels
python/paddle_serving_app/models/model_list.py
浏览文件 @
d99c9bc3
...
...
@@ -20,78 +20,49 @@ from collections import OrderedDict
class
ServingModels
(
object
):
def
__init__
(
self
):
self
.
model_dict
=
OrderedDict
()
#senta
for
key
in
[
"senta_bilstm"
,
"senta_bow"
,
"senta_cnn"
,
"senta_gru"
,
"senta_lstm"
]:
self
.
model_dict
[
key
]
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/"
+
key
+
".tar.gz"
#image classification
for
key
in
[
"alexnet_imagenet"
,
"darknet53-imagenet"
,
"densenet121_imagenet"
,
"densenet161_imagenet"
,
"densenet169_imagenet"
,
"densenet201_imagenet"
,
"densenet264_imagenet"
"dpn107_imagenet"
,
"dpn131_imagenet"
,
"dpn68_imagenet"
,
"dpn92_imagenet"
,
"dpn98_imagenet"
,
"efficientnetb0_imagenet"
,
"efficientnetb1_imagenet"
,
"efficientnetb2_imagenet"
,
"efficientnetb3_imagenet"
,
"efficientnetb4_imagenet"
,
"efficientnetb5_imagenet"
,
"efficientnetb6_imagenet"
,
"googlenet_imagenet"
,
"inception_v4_imagenet"
,
"inception_v2_imagenet"
,
"nasnet_imagenet"
,
"pnasnet_imagenet"
,
"resnet_v2_101_imagenet"
,
"resnet_v2_151_imagenet"
,
"resnet_v2_18_imagenet"
,
"resnet_v2_34_imagenet"
,
"resnet_v2_50_imagenet"
,
"resnext101_32x16d_wsl"
,
"resnext101_32x32d_wsl"
,
"resnext101_32x48d_wsl"
,
"resnext101_32x8d_wsl"
,
"resnext101_32x4d_imagenet"
,
"resnext101_64x4d_imagenet"
,
"resnext101_vd_32x4d_imagenet"
,
"resnext101_vd_64x4d_imagenet"
,
"resnext152_64x4d_imagenet"
,
"resnext152_vd_64x4d_imagenet"
,
"resnext50_64x4d_imagenet"
,
"resnext50_vd_32x4d_imagenet"
,
"resnext50_vd_64x4d_imagenet"
,
"se_resnext101_32x4d_imagenet"
,
"se_resnext50_32x4d_imagenet"
,
"shufflenet_v2_imagenet"
,
"vgg11_imagenet"
,
"vgg13_imagenet"
,
"vgg16_imagenet"
,
"vgg19_imagenet"
,
"xception65_imagenet"
,
"xception71_imagenet"
,
]:
self
.
model_dict
[
key
]
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/"
+
key
+
".tar.gz"
self
.
model_dict
[
"SentimentAnalysis"
]
=
[
"senta_bilstm"
,
"senta_bow"
,
"senta_cnn"
]
self
.
model_dict
[
"SemanticRepresentation"
]
=
[
"ernie_base"
]
self
.
model_dict
[
"ChineseWordSegmentation"
]
=
[
"lac"
]
self
.
model_dict
[
"ObjectDetection"
]
=
[
"faster_rcnn"
,
"yolov3"
]
self
.
model_dict
[
"ImageSegmentation"
]
=
[
"unet"
,
"deeplabv3"
]
self
.
model_dict
[
"ImageClassification"
]
=
[
"resnet_v2_50_imagenet"
,
"mobilenet_v2_imagenet"
]
image_class_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/"
image_seg_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageSegmentation/"
object_detection_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ObjectDetection/"
senta_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/"
semantic_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticRepresentation/"
wordseg_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/ChineseWordSegmentation/"
self
.
url_dict
=
{}
def
pack_url
(
model_dict
,
key
,
url
):
for
i
,
value
in
enumerate
(
model_dict
[
key
]):
self
.
url_dict
[
model_dict
[
key
][
i
]]
=
url
+
model_dict
[
key
][
i
]
+
".tar.gz"
pack_url
(
self
.
model_dict
,
"SentimentAnalysis"
,
senta_url
)
pack_url
(
self
.
model_dict
,
"SemanticRepresentation"
,
semantic_url
)
pack_url
(
self
.
model_dict
,
"ChineseWordSegmentation"
,
wordseg_url
)
pack_url
(
self
.
model_dict
,
"ObjectDetection"
,
object_detection_url
)
pack_url
(
self
.
model_dict
,
"ImageSegmentation"
,
image_seg_url
)
pack_url
(
self
.
model_dict
,
"ImageClassification"
,
image_class_url
)
def
get_model_list
(
self
):
return
(
self
.
model_dict
.
keys
())
return
self
.
model_dict
def
download
(
self
,
model_name
):
if
model_name
in
self
.
mode
l_dict
:
url
=
self
.
mode
l_dict
[
model_name
]
if
model_name
in
self
.
ur
l_dict
:
url
=
self
.
ur
l_dict
[
model_name
]
r
=
os
.
system
(
'wget '
+
url
+
' --no-check-certificate'
)
def
get_tutorial
(
self
,
model_name
):
if
model_name
in
self
.
tutorial_url
:
return
"Tutorial of {} to be added"
.
format
(
model_name
)
if
__name__
==
"__main__"
:
models
=
ServingModels
()
...
...
python/paddle_serving_app/package.py
浏览文件 @
d99c9bc3
...
...
@@ -20,6 +20,7 @@ Usage:
"""
import
argparse
import
sys
from
.models
import
ServingModels
...
...
@@ -29,6 +30,8 @@ def parse_args(): # pylint: disable=doc-string-missing
"--get_model"
,
type
=
str
,
default
=
""
,
help
=
"Download a specific model"
)
parser
.
add_argument
(
'--list_model'
,
nargs
=
'*'
,
default
=
None
,
help
=
"List Models"
)
parser
.
add_argument
(
'--tutorial'
,
type
=
str
,
default
=
""
,
help
=
"Get running command"
)
return
parser
.
parse_args
()
...
...
@@ -36,18 +39,33 @@ if __name__ == "__main__":
args
=
parse_args
()
if
args
.
list_model
!=
None
:
model_handle
=
ServingModels
()
model_names
=
model_handle
.
get_model_list
()
for
key
in
model_names
:
print
(
key
)
model_dict
=
model_handle
.
get_model_list
()
# Task level model list
# Text Classification, Semantic Representation
# Image Classification, Object Detection, Image Segmentation
for
key
in
model_dict
:
print
(
"-----------------------------------------------"
)
print
(
"{}: {}"
.
format
(
key
,
" | "
.
join
(
model_dict
[
key
])))
elif
args
.
get_model
!=
""
:
model_handle
=
ServingModels
()
model_
names
=
model_handle
.
get_model_list
()
if
args
.
get_model
not
in
model_
names
:
model_
dict
=
model_handle
.
url_dict
if
args
.
get_model
not
in
model_
dict
:
print
(
"Your model name does not exist in current model list, stay tuned"
)
sys
.
exit
(
0
)
model_handle
.
download
(
args
.
get_model
)
elif
args
.
tutorial
!=
""
:
model_handle
=
ServingModels
()
model_dict
=
model_handle
.
url_dict
if
args
.
get_model
not
in
model_dict
:
print
(
"Your model name does not exist in current model list, stay tuned"
)
sys
.
exit
(
0
)
tutorial_str
=
model_handle
.
get_tutorial
()
print
(
tutorial_str
)
else
:
print
(
"Wrong argument"
)
print
(
"""
...
...
python/paddle_serving_app/reader/__init__.py
浏览文件 @
d99c9bc3
...
...
@@ -11,3 +11,4 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.image_reader
import
ImageReader
,
File2Image
,
URL2Image
,
Sequential
,
Normalize
,
CenterCrop
,
Resize
,
Transpose
,
Div
,
RGB2BGR
,
BGR2RGB
,
RCNNPostprocess
,
SegPostprocess
python/paddle_serving_app/reader/daisy.jpg
0 → 100644
浏览文件 @
d99c9bc3
38.8 KB
python/paddle_serving_app/reader/functional.py
0 → 100644
浏览文件 @
d99c9bc3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
cv2
import
numpy
as
np
def
transpose
(
img
,
transpose_target
):
img
=
img
.
transpose
(
transpose_target
)
return
img
def
normalize
(
img
,
mean
,
std
,
channel_first
):
# need to optimize here
if
channel_first
:
img_mean
=
np
.
array
(
mean
).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
(
std
).
reshape
((
3
,
1
,
1
))
else
:
img_mean
=
np
.
array
(
mean
).
reshape
((
1
,
1
,
3
))
img_std
=
np
.
array
(
std
).
reshape
((
1
,
1
,
3
))
img
-=
img_mean
img
/=
img_std
return
img
def
crop
(
img
,
target_size
,
center
):
height
,
width
=
img
.
shape
[:
2
]
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
//
2
h_start
=
(
height
-
size
)
//
2
else
:
w_start
=
np
.
random
.
randint
(
0
,
width
-
size
+
1
)
h_start
=
np
.
random
.
randint
(
0
,
height
-
size
+
1
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
[
h_start
:
h_end
,
w_start
:
w_end
,
:]
return
img
def
resize
(
img
,
target_size
,
max_size
=
2147483647
,
interpolation
=
None
):
if
isinstance
(
target_size
,
tuple
):
resized_width
=
min
(
target_size
[
0
],
max_size
)
resized_height
=
min
(
target_size
[
1
],
max_size
)
else
:
im_max_size
=
max
(
img
.
shape
[
0
],
img
.
shape
[
1
])
percent
=
float
(
target_size
)
/
min
(
img
.
shape
[
0
],
img
.
shape
[
1
])
if
np
.
round
(
percent
*
im_max_size
)
>
max_size
:
percent
=
float
(
max_size
)
/
float
(
im_max_size
)
resized_width
=
int
(
round
(
img
.
shape
[
1
]
*
percent
))
resized_height
=
int
(
round
(
img
.
shape
[
0
]
*
percent
))
if
interpolation
:
resized
=
cv2
.
resize
(
img
,
(
resized_width
,
resized_height
),
interpolation
=
interpolation
)
else
:
resized
=
cv2
.
resize
(
img
,
(
resized_width
,
resized_height
))
return
resized
python/paddle_serving_app/reader/image_reader.py
浏览文件 @
d99c9bc3
...
...
@@ -11,9 +11,472 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
cv2
import
os
import
urllib
import
numpy
as
np
import
base64
import
functional
as
F
from
PIL
import
Image
,
ImageDraw
import
json
_cv2_interpolation_to_str
=
{
cv2
.
INTER_LINEAR
:
"cv2.INTER_LINEAR"
,
None
:
"None"
}
def
generate_colormap
(
num_classes
):
color_map
=
num_classes
*
[
0
,
0
,
0
]
for
i
in
range
(
0
,
num_classes
):
j
=
0
lab
=
i
while
lab
:
color_map
[
i
*
3
]
|=
(((
lab
>>
0
)
&
1
)
<<
(
7
-
j
))
color_map
[
i
*
3
+
1
]
|=
(((
lab
>>
1
)
&
1
)
<<
(
7
-
j
))
color_map
[
i
*
3
+
2
]
|=
(((
lab
>>
2
)
&
1
)
<<
(
7
-
j
))
j
+=
1
lab
>>=
3
color_map
=
[
color_map
[
i
:
i
+
3
]
for
i
in
range
(
0
,
len
(
color_map
),
3
)]
return
color_map
class
SegPostprocess
(
object
):
def
__init__
(
self
,
class_num
):
self
.
class_num
=
class_num
def
__call__
(
self
,
image_with_result
):
if
"filename"
not
in
image_with_result
:
raise
(
"filename should be specified in postprocess"
)
img_name
=
image_with_result
[
"filename"
]
ori_img
=
cv2
.
imread
(
img_name
,
-
1
)
ori_shape
=
ori_img
.
shape
mask
=
None
for
key
in
image_with_result
:
if
".lod"
in
key
or
"filename"
in
key
:
continue
mask
=
image_with_result
[
key
]
if
mask
is
None
:
raise
(
"segment mask should be specified in postprocess"
)
mask
=
mask
.
astype
(
"uint8"
)
mask_png
=
mask
.
reshape
((
512
,
512
,
1
))
#score_png = mask_png[:, :, np.newaxis]
score_png
=
mask_png
score_png
=
np
.
concatenate
([
score_png
]
*
3
,
axis
=
2
)
color_map
=
generate_colormap
(
self
.
class_num
)
for
i
in
range
(
score_png
.
shape
[
0
]):
for
j
in
range
(
score_png
.
shape
[
1
]):
score_png
[
i
,
j
]
=
color_map
[
score_png
[
i
,
j
,
0
]]
ext_pos
=
img_name
.
rfind
(
"."
)
img_name_fix
=
img_name
[:
ext_pos
]
+
"_"
+
img_name
[
ext_pos
+
1
:]
mask_save_name
=
img_name_fix
+
"_mask.png"
cv2
.
imwrite
(
mask_save_name
,
mask_png
,
[
cv2
.
CV_8UC1
])
vis_result_name
=
img_name_fix
+
"_result.png"
result_png
=
score_png
result_png
=
cv2
.
resize
(
result_png
,
ori_shape
[:
2
],
fx
=
0
,
fy
=
0
,
interpolation
=
cv2
.
INTER_CUBIC
)
cv2
.
imwrite
(
vis_result_name
,
result_png
,
[
cv2
.
CV_8UC1
])
class
RCNNPostprocess
(
object
):
def
__init__
(
self
,
label_file
,
output_dir
):
self
.
output_dir
=
output_dir
self
.
label_file
=
label_file
self
.
label_list
=
[]
with
open
(
label_file
)
as
fin
:
for
line
in
fin
:
self
.
label_list
.
append
(
line
.
strip
())
self
.
clsid2catid
=
{
i
:
i
for
i
in
range
(
len
(
self
.
label_list
))}
self
.
catid2name
=
{
i
:
name
for
i
,
name
in
enumerate
(
self
.
label_list
)}
def
_offset_to_lengths
(
self
,
lod
):
offset
=
lod
[
0
]
lengths
=
[
offset
[
i
+
1
]
-
offset
[
i
]
for
i
in
range
(
len
(
offset
)
-
1
)]
return
[
lengths
]
def
_bbox2out
(
self
,
results
,
clsid2catid
,
is_bbox_normalized
=
False
):
xywh_res
=
[]
for
t
in
results
:
bboxes
=
t
[
'bbox'
][
0
]
lengths
=
t
[
'bbox'
][
1
][
0
]
if
bboxes
.
shape
==
(
1
,
1
)
or
bboxes
is
None
:
continue
k
=
0
for
i
in
range
(
len
(
lengths
)):
num
=
lengths
[
i
]
for
j
in
range
(
num
):
dt
=
bboxes
[
k
]
clsid
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
catid
=
(
clsid2catid
[
int
(
clsid
)])
if
is_bbox_normalized
:
xmin
,
ymin
,
xmax
,
ymax
=
\
self
.
clip_bbox
([
xmin
,
ymin
,
xmax
,
ymax
])
w
=
xmax
-
xmin
h
=
ymax
-
ymin
im_shape
=
t
[
'im_shape'
][
0
][
i
].
tolist
()
im_height
,
im_width
=
int
(
im_shape
[
0
]),
int
(
im_shape
[
1
])
xmin
*=
im_width
ymin
*=
im_height
w
*=
im_width
h
*=
im_height
else
:
w
=
xmax
-
xmin
+
1
h
=
ymax
-
ymin
+
1
bbox
=
[
xmin
,
ymin
,
w
,
h
]
coco_res
=
{
'category_id'
:
catid
,
'bbox'
:
bbox
,
'score'
:
score
}
xywh_res
.
append
(
coco_res
)
k
+=
1
return
xywh_res
def
_get_bbox_result
(
self
,
fetch_map
,
fetch_name
,
clsid2catid
):
result
=
{}
is_bbox_normalized
=
False
output
=
fetch_map
[
fetch_name
]
lod
=
[
fetch_map
[
fetch_name
+
'.lod'
]]
lengths
=
self
.
_offset_to_lengths
(
lod
)
np_data
=
np
.
array
(
output
)
result
[
'bbox'
]
=
(
np_data
,
lengths
)
result
[
'im_id'
]
=
np
.
array
([[
0
]])
bbox_results
=
self
.
_bbox2out
([
result
],
clsid2catid
,
is_bbox_normalized
)
return
bbox_results
def
color_map
(
self
,
num_classes
):
color_map
=
num_classes
*
[
0
,
0
,
0
]
for
i
in
range
(
0
,
num_classes
):
j
=
0
lab
=
i
while
lab
:
color_map
[
i
*
3
]
|=
(((
lab
>>
0
)
&
1
)
<<
(
7
-
j
))
color_map
[
i
*
3
+
1
]
|=
(((
lab
>>
1
)
&
1
)
<<
(
7
-
j
))
color_map
[
i
*
3
+
2
]
|=
(((
lab
>>
2
)
&
1
)
<<
(
7
-
j
))
j
+=
1
lab
>>=
3
color_map
=
np
.
array
(
color_map
).
reshape
(
-
1
,
3
)
return
color_map
def
draw_bbox
(
self
,
image
,
catid2name
,
bboxes
,
threshold
,
color_list
):
"""
draw bbox on image
"""
draw
=
ImageDraw
.
Draw
(
image
)
for
dt
in
np
.
array
(
bboxes
):
catid
,
bbox
,
score
=
dt
[
'category_id'
],
dt
[
'bbox'
],
dt
[
'score'
]
if
score
<
threshold
:
continue
xmin
,
ymin
,
w
,
h
=
bbox
xmax
=
xmin
+
w
ymax
=
ymin
+
h
color
=
tuple
(
color_list
[
catid
])
# draw bbox
draw
.
line
(
[(
xmin
,
ymin
),
(
xmin
,
ymax
),
(
xmax
,
ymax
),
(
xmax
,
ymin
),
(
xmin
,
ymin
)],
width
=
2
,
fill
=
color
)
# draw label
text
=
"{} {:.2f}"
.
format
(
catid2name
[
catid
],
score
)
tw
,
th
=
draw
.
textsize
(
text
)
draw
.
rectangle
(
[(
xmin
+
1
,
ymin
-
th
),
(
xmin
+
tw
+
1
,
ymin
)],
fill
=
color
)
draw
.
text
((
xmin
+
1
,
ymin
-
th
),
text
,
fill
=
(
255
,
255
,
255
))
return
image
def
visualize
(
self
,
infer_img
,
bbox_results
,
catid2name
,
num_classes
):
image
=
Image
.
open
(
infer_img
).
convert
(
'RGB'
)
color_list
=
self
.
color_map
(
num_classes
)
image
=
self
.
draw_bbox
(
image
,
self
.
catid2name
,
bbox_results
,
0.5
,
color_list
)
image_path
=
os
.
path
.
split
(
infer_img
)[
-
1
]
if
not
os
.
path
.
exists
(
self
.
output_dir
):
os
.
makedirs
(
self
.
output_dir
)
out_path
=
os
.
path
.
join
(
self
.
output_dir
,
image_path
)
image
.
save
(
out_path
,
quality
=
95
)
def
__call__
(
self
,
image_with_bbox
):
fetch_name
=
""
for
key
in
image_with_bbox
:
if
key
==
"image"
:
continue
if
".lod"
in
key
:
continue
fetch_name
=
key
bbox_result
=
self
.
_get_bbox_result
(
image_with_bbox
,
fetch_name
,
self
.
clsid2catid
)
if
os
.
path
.
isdir
(
self
.
output_dir
)
is
False
:
os
.
mkdir
(
self
.
output_dir
)
self
.
visualize
(
image_with_bbox
[
"image"
],
bbox_result
,
self
.
catid2name
,
len
(
self
.
label_list
))
if
os
.
path
.
isdir
(
self
.
output_dir
)
is
False
:
os
.
mkdir
(
self
.
output_dir
)
bbox_file
=
os
.
path
.
join
(
self
.
output_dir
,
'bbox.json'
)
with
open
(
bbox_file
,
'w'
)
as
f
:
json
.
dump
(
bbox_result
,
f
,
indent
=
4
)
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"label_file: {1}, output_dir: {2}"
.
format
(
self
.
label_file
,
self
.
output_dir
)
class
Sequential
(
object
):
"""
Args:
sequence (sequence of ``Transform`` objects): list of transforms to chain.
This API references some of the design pattern of torchvision
Users can simply use this API in training as well
Example:
>>> image_reader.Sequnece([
>>> transforms.CenterCrop(10),
>>> ])
"""
def
__init__
(
self
,
transforms
):
self
.
transforms
=
transforms
def
__call__
(
self
,
img
):
for
t
in
self
.
transforms
:
img
=
t
(
img
)
return
img
def
__repr__
(
self
):
format_string_
=
self
.
__class__
.
__name__
+
'('
for
t
in
self
.
transforms
:
format_string_
+=
'
\n
'
format_string_
+=
' {0}'
.
format
(
t
)
format_string_
+=
'
\n
)'
return
format_string_
class
RGB2BGR
(
object
):
def
__init__
(
self
):
pass
def
__call__
(
self
,
img
):
return
img
[:,
:,
::
-
1
]
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"()"
class
BGR2RGB
(
object
):
def
__init__
(
self
):
pass
def
__call__
(
self
,
img
):
return
img
[:,
:,
::
-
1
]
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"()"
class
File2Image
(
object
):
def
__init__
(
self
):
pass
def
__call__
(
self
,
img_path
):
fin
=
open
(
img_path
)
sample
=
fin
.
read
()
data
=
np
.
fromstring
(
sample
,
np
.
uint8
)
img
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
'''
img = cv2.imread(img_path, -1)
channels = img.shape[2]
ori_h = img.shape[0]
ori_w = img.shape[1]
'''
return
img
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"()"
class
URL2Image
(
object
):
def
__init__
(
self
):
pass
def
__call__
(
self
,
img_url
):
resp
=
urllib
.
urlopen
(
img_url
)
sample
=
resp
.
read
()
data
=
np
.
fromstring
(
sample
,
np
.
uint8
)
img
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
return
img
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"()"
class
Base64ToImage
(
object
):
def
__init__
(
self
):
pass
def
__call__
(
self
,
img_base64
):
img
=
base64
.
b64decode
(
img_base64
)
return
img
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"()"
class
Div
(
object
):
""" divide by some float number """
def
__init__
(
self
,
value
):
self
.
value
=
value
def
__call__
(
self
,
img
):
"""
Args:
img (numpy array): (int8 numpy array)
Returns:
img (numpy array): (float32 numpy array)
"""
img
=
img
.
astype
(
'float32'
)
/
self
.
value
return
img
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
"({})"
.
format
(
self
.
value
)
class
Normalize
(
object
):
"""Normalize a tensor image with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
will normalize each channel of the input ``torch.*Tensor`` i.e.
``output[channel] = (input[channel] - mean[channel]) / std[channel]``
.. note::
This transform acts out of place, i.e., it does not mutate the input tensor.
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
"""
def
__init__
(
self
,
mean
,
std
,
channel_first
=
False
):
self
.
mean
=
mean
self
.
std
=
std
self
.
channel_first
=
channel_first
def
__call__
(
self
,
img
):
"""
Args:
img (numpy array): (C, H, W) to be normalized.
Returns:
Tensor: Normalized Tensor image.
"""
return
F
.
normalize
(
img
,
self
.
mean
,
self
.
std
,
self
.
channel_first
)
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
'(mean={0}, std={1})'
.
format
(
self
.
mean
,
self
.
std
)
class
Lambda
(
object
):
"""Apply a user-defined lambda as a transform.
Very shame to just copy from
https://github.com/pytorch/vision/blob/master/torchvision/transforms/transforms.py#L301
Args:
lambd (function): Lambda/function to be used for transform.
"""
def
__init__
(
self
,
lambd
):
assert
callable
(
lambd
),
repr
(
type
(
lambd
)
.
__name__
)
+
" object is not callable"
self
.
lambd
=
lambd
def
__call__
(
self
,
img
):
return
self
.
lambd
(
img
)
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
'()'
class
CenterCrop
(
object
):
"""Crops the given Image at the center.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def
__init__
(
self
,
size
):
self
.
size
=
size
def
__call__
(
self
,
img
):
"""
Args:
img (numpy array): Image to be cropped.
Returns:
numpy array Image: Cropped image.
"""
return
F
.
crop
(
img
,
self
.
size
,
True
)
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
'(size={0})'
.
format
(
self
.
size
)
class
Resize
(
object
):
"""Resize the input numpy array Image to the given size.
Args:
size (sequence or int): Desired output size. If size is a sequence like
(h, w), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is
``None``
"""
def
__init__
(
self
,
size
,
max_size
=
2147483647
,
interpolation
=
None
):
self
.
size
=
size
self
.
max_size
=
max_size
self
.
interpolation
=
interpolation
def
__call__
(
self
,
img
):
return
F
.
resize
(
img
,
self
.
size
,
self
.
max_size
,
self
.
interpolation
)
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
'(size={0}, max_size={1}, interpolation={2})'
.
format
(
self
.
size
,
self
.
max_size
,
_cv2_interpolation_to_str
[
self
.
interpolation
])
class
Transpose
(
object
):
def
__init__
(
self
,
transpose_target
):
self
.
transpose_target
=
transpose_target
def
__call__
(
self
,
img
):
return
F
.
transpose
(
img
,
self
.
transpose_target
)
return
img
def
__repr__
(
self
):
format_string
=
self
.
__class__
.
__name__
+
\
"({})"
.
format
(
self
.
transpose_target
)
return
format_string
class
ImageReader
():
...
...
python/paddle_serving_app/reader/test_image_reader.py
0 → 100644
浏览文件 @
d99c9bc3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
image_reader
import
File2Image
from
image_reader
import
URL2Image
from
image_reader
import
Sequential
from
image_reader
import
Normalize
from
image_reader
import
CenterCrop
from
image_reader
import
Resize
seq
=
Sequential
([
File2Image
(),
CenterCrop
(
30
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
]),
Resize
((
5
,
5
))
])
url
=
"daisy.jpg"
for
x
in
range
(
100
):
img
=
seq
(
url
)
print
(
img
.
shape
)
python/paddle_serving_app/version.py
浏览文件 @
d99c9bc3
...
...
@@ -12,4 +12,4 @@
# See the License for the specific language governing permissions and
# limitations under the License.
""" Paddle Serving App version string """
serving_app_version
=
"0.0.
1
"
serving_app_version
=
"0.0.
3
"
python/paddle_serving_client/__init__.py
浏览文件 @
d99c9bc3
...
...
@@ -125,7 +125,11 @@ class Client(object):
lib_path
=
os
.
path
.
dirname
(
paddle_serving_client
.
__file__
)
client_path
=
os
.
path
.
join
(
lib_path
,
'serving_client.so'
)
lib_path
=
os
.
path
.
join
(
lib_path
,
'lib'
)
os
.
system
(
'patchelf --set-rpath {} {}'
.
format
(
lib_path
,
client_path
))
ld_path
=
os
.
getenv
(
'LD_LIBRARY_PATH'
)
if
ld_path
==
None
:
os
.
environ
[
'LD_LIBRARY_PATH'
]
=
lib_path
elif
ld_path
not
in
lib_path
:
os
.
environ
[
'LD_LIBRARY_PATH'
]
=
ld_path
+
':'
+
lib_path
def
load_client_config
(
self
,
path
):
from
.serving_client
import
PredictorClient
...
...
python/paddle_serving_client/version.py
浏览文件 @
d99c9bc3
...
...
@@ -12,6 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
""" Paddle Serving Client version string """
serving_client_version
=
"0.2.
0
"
serving_server_version
=
"0.2.
0
"
module_proto_version
=
"0.2.
0
"
serving_client_version
=
"0.2.
2
"
serving_server_version
=
"0.2.
2
"
module_proto_version
=
"0.2.
2
"
python/paddle_serving_server/version.py
浏览文件 @
d99c9bc3
...
...
@@ -12,6 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
""" Paddle Serving Client version string """
serving_client_version
=
"0.2.
0
"
serving_server_version
=
"0.2.
0
"
module_proto_version
=
"0.2.
0
"
serving_client_version
=
"0.2.
2
"
serving_server_version
=
"0.2.
2
"
module_proto_version
=
"0.2.
2
"
python/paddle_serving_server_gpu/version.py
浏览文件 @
d99c9bc3
...
...
@@ -12,6 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
""" Paddle Serving Client version string """
serving_client_version
=
"0.2.
0
"
serving_server_version
=
"0.2.
0
"
module_proto_version
=
"0.2.
0
"
serving_client_version
=
"0.2.
2
"
serving_server_version
=
"0.2.
2
"
module_proto_version
=
"0.2.
2
"
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录