Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
ce9d9238
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ce9d9238
编写于
11月 22, 2020
作者:
R
root
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify faster_rcnn_model benchmark
上级
c8c7f4d0
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
277 addition
and
0 deletion
+277
-0
python/examples/faster_rcnn_model/benchmark.py
python/examples/faster_rcnn_model/benchmark.py
+125
-0
python/examples/faster_rcnn_model/benchmark.sh
python/examples/faster_rcnn_model/benchmark.sh
+52
-0
python/examples/faster_rcnn_model/result
python/examples/faster_rcnn_model/result
+100
-0
未找到文件。
python/examples/faster_rcnn_model/benchmark.py
0 → 100755
浏览文件 @
ce9d9238
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
__future__
import
unicode_literals
,
absolute_import
import
os
import
sys
import
time
import
json
import
requests
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
from
paddle_serving_app.reader
import
ChineseBertReader
from
paddle_serving_app.reader
import
*
import
numpy
as
np
args
=
benchmark_args
()
def
single_func
(
idx
,
resource
):
img
=
"./000000570688.jpg"
profile_flags
=
False
latency_flags
=
False
if
os
.
getenv
(
"FLAGS_profile_client"
):
profile_flags
=
True
if
os
.
getenv
(
"FLAGS_serving_latency"
):
latency_flags
=
True
latency_list
=
[]
if
args
.
request
==
"rpc"
:
preprocess
=
Sequential
([
File2Image
(),
BGR2RGB
(),
Div
(
255.0
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
False
),
Resize
(
640
,
640
),
Transpose
((
2
,
0
,
1
))
])
postprocess
=
RCNNPostprocess
(
"label_list.txt"
,
"output"
)
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]])
start
=
time
.
time
()
for
i
in
range
(
turns
):
if
args
.
batch_size
>=
1
:
l_start
=
time
.
time
()
feed_batch
=
[]
b_start
=
time
.
time
()
im
=
preprocess
(
img
)
for
bi
in
range
(
args
.
batch_size
):
print
(
"1111batch"
)
print
(
bi
)
feed_batch
.
append
({
"image"
:
im
,
"im_info"
:
np
.
array
(
list
(
im
.
shape
[
1
:])
+
[
1.0
]),
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])
+
[
1.0
])})
# im = preprocess(img)
b_end
=
time
.
time
()
if
profile_flags
:
sys
.
stderr
.
write
(
"PROFILE
\t
pid:{}
\t
bert_pre_0:{} bert_pre_1:{}
\n
"
.
format
(
os
.
getpid
(),
int
(
round
(
b_start
*
1000000
)),
int
(
round
(
b_end
*
1000000
))))
#result = client.predict(feed=feed_batch, fetch=fetch)
fetch_map
=
client
.
predict
(
feed
=
feed_batch
,
fetch
=
[
"multiclass_nms"
])
fetch_map
[
"image"
]
=
img
postprocess
(
fetch_map
)
l_end
=
time
.
time
()
if
latency_flags
:
latency_list
.
append
(
l_end
*
1000
-
l_start
*
1000
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
else
:
raise
ValueError
(
"not implemented {} request"
.
format
(
args
.
request
))
end
=
time
.
time
()
if
latency_flags
:
return
[[
end
-
start
],
latency_list
]
else
:
return
[[
end
-
start
]]
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:7777"
]
turns
=
10
start
=
time
.
time
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
,
"turns"
:
turns
})
end
=
time
.
time
()
total_cost
=
end
-
start
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"total cost: {}s"
.
format
(
total_cost
))
print
(
"each thread cost: {}s. "
.
format
(
avg_cost
))
print
(
"qps: {}samples/s"
.
format
(
args
.
batch_size
*
args
.
thread
*
turns
/
total_cost
))
if
os
.
getenv
(
"FLAGS_serving_latency"
):
show_latency
(
result
[
1
])
python/examples/faster_rcnn_model/benchmark.sh
0 → 100755
浏览文件 @
ce9d9238
rm
profile_log
*
export
CUDA_VISIBLE_DEVICES
=
0
export
FLAGS_profile_server
=
1
export
FLAGS_profile_client
=
1
export
FLAGS_serving_latency
=
1
gpu_id
=
0
#save cpu and gpu utilization log
if
[
-d
utilization
]
;
then
rm
-rf
utilization
else
mkdir
utilization
fi
#start server
$PYTHONROOT
/bin/python3
-m
paddle_serving_server_gpu.serve
--model
$1
--port
7777
--thread
4
--gpu_ids
0
--ir_optim
>
elog 2>&1 &
sleep
5
#warm up
$PYTHONROOT
/bin/python3 benchmark.py
--thread
4
--batch_size
1
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
-e
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
for
thread_num
in
1 4 8 16
do
for
batch_size
in
1
do
job_bt
=
`
date
'+%Y%m%d%H%M%S'
`
nvidia-smi
--id
=
0
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
0
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
gpu_memory_pid
=
$!
$PYTHONROOT
/bin/python3 benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
kill
${
gpu_memory_pid
}
kill
`
ps
-ef
|grep used_memory|awk
'{print $2}'
`
echo
"model_name:"
$1
echo
"thread_num:"
$thread_num
echo
"batch_size:"
$batch_size
echo
"=================Done===================="
echo
"model_name:
$1
"
>>
profile_log_
$1
echo
"batch_size:
$batch_size
"
>>
profile_log_
$1
$PYTHONROOT
/bin/python3 cpu_utilization.py
>>
profile_log_
$1
job_et
=
`
date
'+%Y%m%d%H%M%S'
`
awk
'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}'
gpu_use.log
>>
profile_log_
$1
awk
'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}'
gpu_utilization.log
>>
profile_log_
$1
rm
-rf
gpu_use.log gpu_utilization.log
$PYTHONROOT
/bin/python3 ../util/show_profile.py profile
$thread_num
>>
profile_log_
$1
tail
-n
8 profile
>>
profile_log_
$1
echo
""
>>
profile_log_
$1
done
done
#Divided log
awk
'BEGIN{RS="\n\n"}{i++}{print > "bert_log_"i}'
profile_log_
$1
mkdir
bert_log
&&
mv
bert_log_
*
bert_log
ps
-ef
|grep
'serving'
|grep
-v
grep
|cut
-c
9-15 | xargs
kill
-9
python/examples/faster_rcnn_model/result
0 → 100755
浏览文件 @
ce9d9238
model_name:pddet_serving_model
batch_size:1
CPU_UTILIZATION: 0.0
MAX_GPU_MEMORY: 14525
GPU_UTILIZATION: 100
thread_num: 1
prepro cost: 0.044376s in each thread
client_infer cost: 4.227083s in each thread
op0 cost: 0.015847s in each thread
op1 cost: 3.990032s in each thread
op2 cost: 9.7e-05s in each thread
postpro cost: 0.000244s in each thread
bert_pre cost: 0.304728s in each thread
py_prepro cost: 0.000431s in each thread
py_client cost: 4.273316s in each thread
py_postpro cost: 0.000703s in each thread
mean: 494.598486328125ms
median: 480.2005615234375ms
80 percent: 486.3544921875ms
90 percent: 508.5200439453124ms
99 percent: 624.6452905273438ms
total cost: 5.024378299713135s
each thread cost: 4.9460344314575195s.
qps: 1.990295993550276samples/s
model_name:pddet_serving_model
batch_size:1
CPU_UTILIZATION: 0.0
MAX_GPU_MEMORY: 14525
GPU_UTILIZATION: 100
thread_num: 4
prepro cost: 0.0502565s in each thread
client_infer cost: 14.9771025s in each thread
op0 cost: 0.013033s in each thread
op1 cost: 14.754957s in each thread
op2 cost: 0.00012475s in each thread
postpro cost: 0.00036225s in each thread
bert_pre cost: 0.306132s in each thread
py_prepro cost: 0.000511s in each thread
py_client cost: 15.03027975s in each thread
py_postpro cost: 0.0009275s in each thread
mean: 1569.41435546875ms
median: 1614.8760986328125ms
80 percent: 1799.3856445312506ms
90 percent: 2011.609326171875ms
99 percent: 2379.27158203125ms
total cost: 16.35568356513977s
each thread cost: 15.694196701049805s.
qps: 2.4456330327431455samples/s
model_name:pddet_serving_model
batch_size:1
CPU_UTILIZATION: 0.1
MAX_GPU_MEMORY: 14525
GPU_UTILIZATION: 100
thread_num: 8
prepro cost: 0.0546985s in each thread
client_infer cost: 31.083384375s in each thread
op0 cost: 0.0140595s in each thread
op1 cost: 16.07133675s in each thread
op2 cost: 0.000132625s in each thread
postpro cost: 0.000318375s in each thread
bert_pre cost: 0.31432075s in each thread
py_prepro cost: 0.00053575s in each thread
py_client cost: 31.140613125s in each thread
py_postpro cost: 0.000807375s in each thread
mean: 3181.2632019042967ms
median: 3290.6607666015625ms
80 percent: 3338.09208984375ms
90 percent: 3686.9481689453123ms
99 percent: 3735.27556640625ms
total cost: 33.31558895111084s
each thread cost: 31.812688767910004s.
qps: 2.40127827598655samples/s
model_name:pddet_serving_model
batch_size:1
CPU_UTILIZATION: 0.0
MAX_GPU_MEMORY: 14525
GPU_UTILIZATION: 100
thread_num: 16
prepro cost: 0.0592799375s in each thread
client_infer cost: 62.949139375s in each thread
op0 cost: 0.0134921875s in each thread
op1 cost: 16.5226278125s in each thread
op2 cost: 0.00015525s in each thread
postpro cost: 0.0003169375s in each thread
bert_pre cost: 0.3272226875s in each thread
py_prepro cost: 0.000590125s in each thread
py_client cost: 63.0108379375s in each thread
py_postpro cost: 0.0008313125s in each thread
mean: 6370.063188171387ms
median: 6705.1651611328125ms
80 percent: 7052.77333984375ms
90 percent: 7165.431909179687ms
99 percent: 8213.415532226561ms
total cost: 67.53448605537415s
each thread cost: 63.70069542527199s.
qps: 2.3691599558307113samples/s
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录