Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
c598cc9b
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c598cc9b
编写于
12月 06, 2021
作者:
F
felixhjh
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add TensorRT_Dynamic_Shape_CN.md
上级
925786b4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
154 addition
and
0 deletion
+154
-0
doc/TensorRT_Dynamic_Shape_CN.md
doc/TensorRT_Dynamic_Shape_CN.md
+154
-0
未找到文件。
doc/TensorRT_Dynamic_Shape_CN.md
0 → 100644
浏览文件 @
c598cc9b
# 如何配置TensorRT动态shape
(简体中文|
[
English
](
./TensorRT_Dynamic_Shape_EN.md
)
)
## 引言
在Pipeline/C++开启TensorRT[
`--use_trt`
]后,关于如何进行动态shape的配置,以下会分别给出Pipeline Serving和C++ Serving示例
以下是动态shape api
```
void SetTRTDynamicShapeInfo(
std::map<std::string, std::vector<int>> min_input_shape,
std::map<std::string, std::vector<int>> max_input_shape,
std::map<std::string, std::vector<int>> optim_input_shape,
bool disable_trt_plugin_fp16 = false);
```
具体API说明请参考
[
C++
](
https://paddleinference.paddlepaddle.org.cn/api_reference/cxx_api_doc/Config/GPUConfig.html#tensorrt
)
/
[
Python
](
https://paddleinference.paddlepaddle.org.cn/api_reference/python_api_doc/Config/GPUConfig.html#tensorrt
)
### C++ Serving
在
`**/paddle_inference/paddle/include/paddle_engine.h`
修改如下代码
```
if (engine_conf.has_use_trt() && engine_conf.use_trt()) {
config.SwitchIrOptim(true);
if (!engine_conf.has_use_gpu() || !engine_conf.use_gpu()) {
config.EnableUseGpu(50, gpu_id);
if (engine_conf.has_gpu_multi_stream() &&
engine_conf.gpu_multi_stream()) {
config.EnableGpuMultiStream();
}
}
config.EnableTensorRtEngine((1 << 30) + (1 << 29),
max_batch,
min_subgraph_size,
precision_type,
true,
FLAGS_use_calib);
// set trt dynamic shape
{
int bsz = 1;
int max_seq_len = 512;
std::map<std::string, std::vector<int>> min_input_shape;
std::map<std::string, std::vector<int>> max_input_shape;
std::map<std::string, std::vector<int>> optim_input_shape;
int hidden_size = 0;
min_input_shape["stack_0.tmp_0"] = {1, 16, 1, 1};
min_input_shape["stack_1.tmp_0"] = {1, 2, 1, 1};
min_input_shape["input_mask"] = {1, 1, 1};
min_input_shape["_generated_var_64"] = {1, 1, 768};
min_input_shape["fc_0.tmp_0"] = {1, 1, 768};
min_input_shape["_generated_var_87"] = {1, 1, 768};
min_input_shape["tmp_175"] = {1, 1, 768};
min_input_shape["c_allreduce_sum_0.tmp_0"] = {1,1, 12288};
min_input_shape["embedding_1.tmp_0"] = {1, 1, 12288};
max_input_shape["stack_0.tmp_0"] = {bsz, 16, max_seq_len, max_seq_len};
max_input_shape["stack_1.tmp_0"] = {bsz, 2, max_seq_len, max_seq_len};
max_input_shape["input_mask"] = {bsz, max_seq_len, max_seq_len};
max_input_shape["_generated_var_64"] = {bsz, max_seq_len, 768};
max_input_shape["fc_0.tmp_0"] = {bsz, max_seq_len, 768};
max_input_shape["_generated_var_87"] = {bsz, max_seq_len, 768};
max_input_shape["tmp_175"] = {bsz, max_seq_len, 768};
max_input_shape["c_allreduce_sum_0.tmp_0"] = {bsz,max_seq_len, 12288};
max_input_shape["embedding_1.tmp_0"] = {bsz, max_seq_len, 12288};
int g1 = 0;
int g2 = 0;
int t1 = 0;
int t2 = 0;
std::string var_name = "_generated_var_";
std::string tmp_name = "tmp_";
for (int i = 0; i < 44; ++i) {
if (i > 32) {
hidden_size = 768;
g1 = 2*i-1;
g2 = 2*i;
t1 = 4*i-1;
t2 = 4*i;
min_input_shape[var_name+std::to_string(g1)] = {1, 1, hidden_size};
min_input_shape[var_name+std::to_string(g2)] = {1, 1, hidden_size};
min_input_shape[tmp_name+std::to_string(t1)] = {1, 1, hidden_size};
min_input_shape[tmp_name+std::to_string(t2)] = {1, 1, hidden_size};
max_input_shape[var_name+std::to_string(g1)] = {bsz, max_seq_len, hidden_size};
max_input_shape[var_name+std::to_string(g2)] = {bsz, max_seq_len, hidden_size};
max_input_shape[tmp_name+std::to_string(t1)] = {bsz, max_seq_len, hidden_size};
max_input_shape[tmp_name+std::to_string(t2)] = {bsz, max_seq_len, hidden_size};
}
if (i <32) {
hidden_size = 12288;
g1 = 2*i;
g2 = 2*i+1;
t1 = 4*i;
t2 = 4*i+3;
min_input_shape[var_name+std::to_string(g1)] = {1, 1, hidden_size};
min_input_shape[var_name+std::to_string(g2)] = {1, 1, hidden_size};
min_input_shape[tmp_name+std::to_string(t1)] = {1, 1, hidden_size};
min_input_shape[tmp_name+std::to_string(t2)] = {1, 1, hidden_size};
max_input_shape[var_name+std::to_string(g1)] = {bsz, max_seq_len, hidden_size};
max_input_shape[var_name+std::to_string(g2)] = {bsz, max_seq_len, hidden_size};
max_input_shape[tmp_name+std::to_string(t1)] = {bsz, max_seq_len, hidden_size};
max_input_shape[tmp_name+std::to_string(t2)] = {bsz, max_seq_len, hidden_size};
}
}
optim_input_shape = max_input_shape;
config.SetTRTDynamicShapeInfo(
min_input_shape, max_input_shape, optim_input_shape);
}
LOG(INFO) << "create TensorRT predictor";
}
```
### Pipeline Serving
在
`**/python/paddle_serving_app/local_predict.py`
中修改如下代码
```
if use_trt:
config.enable_tensorrt_engine(
precision_mode=precision_type,
workspace_size=1 << 20,
max_batch_size=32,
min_subgraph_size=3,
use_static=False,
use_calib_mode=False)
head_number = 12
names = [
"placeholder_0", "placeholder_1", "placeholder_2", "stack_0.tmp_0"
]
min_input_shape = [1, 1, 1]
max_input_shape = [100, 128, 1]
opt_input_shape = [10, 60, 1]
config.set_trt_dynamic_shape_info(
{
names[0]: min_input_shape,
names[1]: min_input_shape,
names[2]: min_input_shape,
names[3]: [1, head_number, 1, 1]
}, {
names[0]: max_input_shape,
names[1]: max_input_shape,
names[2]: max_input_shape,
names[3]: [100, head_number, 128, 128]
}, {
names[0]: opt_input_shape,
names[1]: opt_input_shape,
names[2]: opt_input_shape,
names[3]: [10, head_number, 60, 60]
})
```
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录