Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
c2f24060
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2f24060
编写于
9月 27, 2019
作者:
W
wangguibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
CTR prediction profiling
上级
b1fdac18
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
91 addition
and
77 deletion
+91
-77
demo-client/src/ctr_prediction.cpp
demo-client/src/ctr_prediction.cpp
+65
-47
demo-serving/op/ctr_prediction_op.cpp
demo-serving/op/ctr_prediction_op.cpp
+24
-24
predictor/src/pdserving.cpp
predictor/src/pdserving.cpp
+2
-6
未找到文件。
demo-client/src/ctr_prediction.cpp
浏览文件 @
c2f24060
...
...
@@ -30,7 +30,6 @@ using baidu::paddle_serving::predictor::ctr_prediction::Response;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
CTRReqInstance
;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
CTRResInstance
;
int
batch_size
=
16
;
int
sparse_num
=
26
;
int
dense_num
=
13
;
int
hash_dim
=
1000001
;
...
...
@@ -157,67 +156,80 @@ void thread_worker(PredictorApi* api,
Request
req
;
Response
res
;
std
::
string
line
;
int
start_index
=
0
;
api
->
thrd_initialize
();
while
(
true
)
{
api
->
thrd_clear
()
;
for
(
int
i
=
0
;
i
<
FLAGS_repeat
;
++
i
)
{
int
start_index
=
0
;
Predictor
*
predictor
=
api
->
fetch_predictor
(
"ctr_prediction_service"
);
if
(
!
predictor
)
{
LOG
(
ERROR
)
<<
"Failed fetch predictor: ctr_prediction_service"
;
return
;
}
while
(
true
)
{
if
(
start_index
>=
data_list
.
size
())
{
break
;
}
req
.
Clear
();
res
.
Clear
();
api
->
thrd_clear
();
// wait for other thread
while
(
g_concurrency
.
load
()
>=
FLAGS_concurrency
)
{
}
g_concurrency
++
;
LOG
(
INFO
)
<<
"Current concurrency "
<<
g_concurrency
.
load
();
Predictor
*
predictor
=
api
->
fetch_predictor
(
"ctr_prediction_service"
);
if
(
!
predictor
)
{
LOG
(
ERROR
)
<<
"Failed fetch predictor: ctr_prediction_service"
;
return
;
}
if
(
create_req
(
&
req
,
data_list
,
start_index
,
FLAGS_batch_size
)
!=
0
)
{
return
;
}
start_index
+=
FLAGS_batch_size
;
req
.
Clear
();
res
.
Clear
();
// wait for other thread
while
(
g_concurrency
.
load
()
>=
FLAGS_concurrency
)
{
}
g_concurrency
++
;
LOG
(
INFO
)
<<
"Current concurrency "
<<
g_concurrency
.
load
();
timeval
start
;
gettimeofday
(
&
start
,
NULL
);
if
(
create_req
(
&
req
,
data_list
,
start_index
,
FLAGS_batch_size
)
!=
0
)
{
return
;
}
start_index
+=
FLAGS_batch_size
;
LOG
(
INFO
)
<<
"start_index = "
<<
start_index
;
if
(
predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req:"
<<
req
.
ShortDebugString
();
return
;
}
g_concurrency
--
;
timeval
start
;
gettimeofday
(
&
start
,
NULL
);
timeval
end
;
gettimeofday
(
&
end
,
NULL
);
uint64_t
elapse_ms
=
(
end
.
tv_sec
*
1000
+
end
.
tv_usec
/
1000
)
-
(
start
.
tv_sec
*
1000
+
start
.
tv_usec
/
1000
);
if
(
predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req:"
<<
req
.
ShortDebugString
();
return
;
}
g_concurrency
--
;
response_time
[
thread_id
].
push_back
(
elapse_ms
);
timeval
end
;
gettimeofday
(
&
end
,
NULL
);
uint64_t
elapse_ms
=
(
end
.
tv_sec
*
1000
+
end
.
tv_usec
/
1000
)
-
(
start
.
tv_sec
*
1000
+
start
.
tv_usec
/
1000
);
if
(
!
FLAGS_enable_profiling
)
{
print_res
(
req
,
res
,
predictor
->
tag
(),
elapse_ms
);
}
response_time
[
thread_id
].
push_back
(
elapse_ms
);
LOG
(
INFO
)
<<
"Done. Current concurrency "
<<
g_concurrency
.
load
();
}
if
(
!
FLAGS_enable_profiling
)
{
print_res
(
req
,
res
,
predictor
->
tag
(),
elapse_ms
);
}
LOG
(
INFO
)
<<
"Done. Current concurrency "
<<
g_concurrency
.
load
();
}
// end while
}
// end for
api
->
thrd_finalize
();
}
void
calc_time
(
int
server_concurrency
,
int
batch_size
)
{
void
calc_time
()
{
std
::
vector
<
int
>
time_list
;
for
(
auto
a
:
response_time
)
{
time_list
.
insert
(
time_list
.
end
(),
a
.
begin
(),
a
.
end
());
}
LOG
(
INFO
)
<<
"Total request : "
<<
(
time_list
.
size
());
LOG
(
INFO
)
<<
"Batch size : "
<<
batch_size
;
LOG
(
INFO
)
<<
"Max concurrency : "
<<
server_concurrency
;
LOG
(
INFO
)
<<
"Batch size : "
<<
FLAGS_batch_size
;
LOG
(
INFO
)
<<
"Max concurrency : "
<<
FLAGS_concurrency
;
LOG
(
INFO
)
<<
"enable_profiling: "
<<
FLAGS_enable_profiling
;
LOG
(
INFO
)
<<
"repeat count: "
<<
FLAGS_repeat
;
float
total_time
=
0
;
float
max_time
=
0
;
float
min_time
=
1000000
;
...
...
@@ -226,21 +238,28 @@ void calc_time(int server_concurrency, int batch_size) {
if
(
time_list
[
i
]
>
max_time
)
max_time
=
time_list
[
i
];
if
(
time_list
[
i
]
<
min_time
)
min_time
=
time_list
[
i
];
}
float
mean_time
=
total_time
/
(
time_list
.
size
());
float
var_time
;
for
(
int
i
=
0
;
i
<
time_list
.
size
();
++
i
)
{
var_time
+=
(
time_list
[
i
]
-
mean_time
)
*
(
time_list
[
i
]
-
mean_time
);
}
var_time
=
var_time
/
time_list
.
size
();
LOG
(
INFO
)
<<
"Total time : "
<<
total_time
/
server_concurrency
<<
" Variance : "
<<
var_time
<<
" Max time : "
<<
max_time
<<
" Min time : "
<<
min_time
;
LOG
(
INFO
)
<<
"Total time : "
<<
total_time
/
FLAGS_concurrency
<<
"ms"
;
LOG
(
INFO
)
<<
"Variance : "
<<
var_time
<<
"ms"
;
LOG
(
INFO
)
<<
"Max time : "
<<
max_time
<<
"ms"
;
LOG
(
INFO
)
<<
"Min time : "
<<
min_time
<<
"ms"
;
float
qps
=
0.0
;
if
(
total_time
>
0
)
qps
=
(
time_list
.
size
()
*
1000
)
/
(
total_time
/
server_concurrency
);
if
(
total_time
>
0
)
{
qps
=
(
time_list
.
size
()
*
1000
)
/
(
total_time
/
FLAGS_concurrency
);
}
LOG
(
INFO
)
<<
"QPS: "
<<
qps
<<
"/s"
;
LOG
(
INFO
)
<<
"Latency statistics: "
;
sort
(
time_list
.
begin
(),
time_list
.
end
());
int
percent_pos_50
=
time_list
.
size
()
*
0.5
;
int
percent_pos_80
=
time_list
.
size
()
*
0.8
;
int
percent_pos_90
=
time_list
.
size
()
*
0.9
;
...
...
@@ -299,7 +318,6 @@ int main(int argc, char** argv) {
}
LOG
(
INFO
)
<<
"data sample file: "
<<
data_filename
;
LOG
(
INFO
)
<<
"enable_profiling: "
<<
FLAGS_enable_profiling
;
if
(
FLAGS_enable_profiling
)
{
LOG
(
INFO
)
<<
"In profiling mode, lot of normal output will be supressed. "
...
...
@@ -330,7 +348,7 @@ int main(int argc, char** argv) {
delete
thread_pool
[
i
];
}
calc_time
(
FLAGS_concurrency
,
batch_size
);
calc_time
();
api
.
destroy
();
return
0
;
...
...
demo-serving/op/ctr_prediction_op.cpp
浏览文件 @
c2f24060
...
...
@@ -148,31 +148,31 @@ int CTRPredictionOp::inference() {
int
ret
;
if
(
FLAGS_enable_ctr_profiling
)
{
gettimeofday
(
&
start
,
NULL
);
ret
=
cube
->
seek
(
table_name
,
keys
,
&
values
);
gettimeofday
(
&
end
,
NULL
);
uint64_t
usec
=
end
.
tv_sec
*
1e6
+
end
.
tv_usec
-
start
.
tv_sec
*
1e6
-
start
.
tv_usec
;
// Statistics
mutex_
.
lock
();
cube_time_us_
+=
usec
;
++
cube_req_num_
;
cube_req_key_num_
+=
keys
.
size
();
if
(
cube_req_num_
>=
1000
)
{
LOG
(
INFO
)
<<
"Cube request count: "
<<
cube_req_num_
;
LOG
(
INFO
)
<<
"Cube request key count: "
<<
cube_req_key_num_
;
LOG
(
INFO
)
<<
"Cube request total time: "
<<
cube_time_us_
<<
"us"
;
LOG
(
INFO
)
<<
"Average "
<<
cube_time_us_
/
cube_req_num_
<<
"us/req"
;
LOG
(
INFO
)
<<
"Average "
<<
cube_time_us_
/
cube_req_key_num_
<<
"us/key"
;
}
mutex_
.
unlock
();
}
else
{
ret
=
cube
->
seek
(
table_name
,
keys
,
&
values
);
gettimeofday
(
&
start
,
NULL
);
ret
=
cube
->
seek
(
table_name
,
keys
,
&
values
);
gettimeofday
(
&
end
,
NULL
);
uint64_t
usec
=
end
.
tv_sec
*
1e6
+
end
.
tv_usec
-
start
.
tv_sec
*
1e6
-
start
.
tv_usec
;
// Statistics
mutex_
.
lock
();
cube_time_us_
+=
usec
;
++
cube_req_num_
;
cube_req_key_num_
+=
keys
.
size
();
if
(
cube_req_num_
>=
1000
)
{
LOG
(
INFO
)
<<
"Cube request count: "
<<
cube_req_num_
;
LOG
(
INFO
)
<<
"Cube request key count: "
<<
cube_req_key_num_
;
LOG
(
INFO
)
<<
"Cube request total time: "
<<
cube_time_us_
<<
"us"
;
LOG
(
INFO
)
<<
"Average "
<<
cube_time_us_
/
cube_req_num_
<<
"us/req"
;
LOG
(
INFO
)
<<
"Average "
<<
cube_time_us_
/
cube_req_key_num_
<<
"us/key"
;
cube_time_us_
=
0
;
cube_req_num_
=
0
;
cube_req_key_num_
=
0
;
}
mutex_
.
unlock
();
// Statistics end
if
(
ret
!=
0
)
{
fill_response_with_message
(
res
,
-
1
,
"Query cube for embeddings error"
);
...
...
predictor/src/pdserving.cpp
浏览文件 @
c2f24060
...
...
@@ -51,8 +51,6 @@ using baidu::paddle_serving::predictor::FLAGS_port;
using
baidu
::
paddle_serving
::
configure
::
InferServiceConf
;
using
baidu
::
paddle_serving
::
configure
::
read_proto_conf
;
DECLARE_bool
(
logtostderr
);
void
print_revision
(
std
::
ostream
&
os
,
void
*
)
{
#if defined(PDSERVING_VERSION)
os
<<
PDSERVING_VERSION
;
...
...
@@ -69,9 +67,6 @@ static bvar::PassiveStatus<std::string> s_predictor_revision(
DEFINE_bool
(
V
,
false
,
"print version, bool"
);
DEFINE_bool
(
g
,
false
,
"user defined gflag path"
);
DEFINE_bool
(
enable_ctr_profiling
,
false
,
"Enable profiling in CTR prediction demo"
);
DECLARE_string
(
flagfile
);
namespace
bthread
{
...
...
@@ -220,7 +215,8 @@ int main(int argc, char** argv) {
}
LOG
(
INFO
)
<<
"Succ initialize cube"
;
FLAGS_logtostderr
=
false
;
// FATAL messages are output to stderr
FLAGS_stderrthreshold
=
3
;
if
(
ServerManager
::
instance
().
start_and_wait
()
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed start server and wait!"
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录