Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
c29df1db
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c29df1db
编写于
8月 01, 2019
作者:
W
Wang Guibao
提交者:
GitHub
8月 01, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request
#1
from MRXLT/ctr_model_serving
add cube init and ctr demo
上级
4f871066
b2e19a74
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
1458 addition
and
25 deletion
+1458
-25
configure/proto/server_configure.proto
configure/proto/server_configure.proto
+2
-0
demo-client/CMakeLists.txt
demo-client/CMakeLists.txt
+12
-0
demo-client/conf/predictors.prototxt
demo-client/conf/predictors.prototxt
+15
-0
demo-client/data/ctr_prediction/data.txt
demo-client/data/ctr_prediction/data.txt
+1000
-0
demo-client/src/ctr_prediction.cpp
demo-client/src/ctr_prediction.cpp
+301
-0
demo-serving/CMakeLists.txt
demo-serving/CMakeLists.txt
+2
-1
demo-serving/conf/cube.conf
demo-serving/conf/cube.conf
+15
-0
demo-serving/conf/gflags.conf
demo-serving/conf/gflags.conf
+1
-0
demo-serving/conf/resource.prototxt
demo-serving/conf/resource.prototxt
+1
-0
demo-serving/op/ctr_prediction_op.cpp
demo-serving/op/ctr_prediction_op.cpp
+7
-21
predictor/common/constant.cpp
predictor/common/constant.cpp
+1
-0
predictor/common/constant.h
predictor/common/constant.h
+3
-0
predictor/framework/resource.cpp
predictor/framework/resource.cpp
+43
-2
predictor/framework/resource.h
predictor/framework/resource.h
+3
-1
predictor/src/pdserving.cpp
predictor/src/pdserving.cpp
+8
-0
sdk-cpp/proto/ctr_prediction.proto
sdk-cpp/proto/ctr_prediction.proto
+44
-0
未找到文件。
configure/proto/server_configure.proto
浏览文件 @
c29df1db
...
...
@@ -35,6 +35,8 @@ message ModelToolkitConf { repeated EngineDesc engines = 1; };
message
ResourceConf
{
required
string
model_toolkit_path
=
1
;
required
string
model_toolkit_file
=
2
;
optional
string
cube_config_path
=
3
;
optional
string
cube_config_file
=
4
;
};
// DAG node depency info
...
...
demo-client/CMakeLists.txt
浏览文件 @
c29df1db
...
...
@@ -57,6 +57,10 @@ add_executable(text_classification_press
target_link_libraries
(
text_classification_press -Wl,--whole-archive sdk-cpp -Wl,--no-whole-archive -lpthread -lcrypto -lm -lrt -lssl -ldl
-lz
)
add_executable
(
ctr_prediction
${
CMAKE_CURRENT_LIST_DIR
}
/src/ctr_prediction.cpp
)
target_link_libraries
(
ctr_prediction -Wl,--whole-archive sdk-cpp
-Wl,--no-whole-archive -lpthread -lcrypto -lm -lrt -lssl -ldl -lz
)
# install
install
(
TARGETS ximage
RUNTIME DESTINATION
...
...
@@ -104,3 +108,11 @@ install(DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/conf DESTINATION
${
PADDLE_SERVING_INSTALL_DIR
}
/demo/client/text_classification/
)
install
(
DIRECTORY
${
CMAKE_CURRENT_LIST_DIR
}
/data/text_classification DESTINATION
${
PADDLE_SERVING_INSTALL_DIR
}
/demo/client/text_classification/data
)
install
(
TARGETS ctr_prediction
RUNTIME DESTINATION
${
PADDLE_SERVING_INSTALL_DIR
}
/demo/client/ctr_prediction/bin
)
install
(
DIRECTORY
${
CMAKE_CURRENT_LIST_DIR
}
/conf DESTINATION
${
PADDLE_SERVING_INSTALL_DIR
}
/demo/client/ctr_prediction/
)
install
(
DIRECTORY
${
CMAKE_CURRENT_LIST_DIR
}
/data/ctr_prediction DESTINATION
${
PADDLE_SERVING_INSTALL_DIR
}
/demo/client/ctr_prediction/data
)
demo-client/conf/predictors.prototxt
浏览文件 @
c29df1db
...
...
@@ -124,3 +124,18 @@ predictors {
}
}
}
predictors {
name: "ctr_prediction_service"
service_name: "baidu.paddle_serving.predictor.ctr_prediction.CTRPredictionService"
endpoint_router: "WeightedRandomRender"
weighted_random_render_conf {
variant_weight_list: "50"
}
variants {
tag: "var1"
naming_conf {
cluster: "list://127.0.0.1:8010"
}
}
}
demo-client/data/ctr_prediction/data.txt
0 → 100644
浏览文件 @
c29df1db
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
demo-client/src/ctr_prediction.cpp
0 → 100644
浏览文件 @
c29df1db
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <cstdlib>
#include <fstream>
#include <sstream>
#include <string>
#include <thread> // NOLINT
#include "sdk-cpp/ctr_prediction.pb.h"
#include "sdk-cpp/include/common.h"
#include "sdk-cpp/include/predictor_sdk.h"
using
baidu
::
paddle_serving
::
sdk_cpp
::
Predictor
;
using
baidu
::
paddle_serving
::
sdk_cpp
::
PredictorApi
;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
CTRReqInstance
;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
CTRResInstance
;
int
batch_size
=
1
;
int
sparse_num
=
26
;
int
dense_num
=
13
;
int
thread_num
=
1
;
int
hash_dim
=
1000001
;
std
::
vector
<
float
>
cont_min
=
{
0
,
-
3
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
std
::
vector
<
float
>
cont_diff
=
{
20
,
603
,
100
,
50
,
64000
,
500
,
100
,
50
,
500
,
10
,
10
,
10
,
50
};
char
*
data_filename
=
"./data/ctr_prediction/data.txt"
;
std
::
atomic
<
int
>
g_concurrency
(
0
);
std
::
vector
<
std
::
vector
<
int
>>
response_time
;
std
::
vector
<
std
::
string
>
split
(
const
std
::
string
&
str
,
const
std
::
string
&
pattern
)
{
std
::
vector
<
std
::
string
>
res
;
if
(
str
==
""
)
return
res
;
std
::
string
strs
=
str
+
pattern
;
size_t
pos
=
strs
.
find
(
pattern
);
while
(
pos
!=
strs
.
npos
)
{
std
::
string
temp
=
strs
.
substr
(
0
,
pos
);
res
.
push_back
(
temp
);
strs
=
strs
.
substr
(
pos
+
1
,
strs
.
size
());
pos
=
strs
.
find
(
pattern
);
}
return
res
;
}
int64_t
hash
(
std
::
string
str
)
{
int64_t
len
;
unsigned
char
*
p
;
int64_t
x
;
len
=
str
.
size
();
p
=
(
unsigned
char
*
)
str
.
c_str
();
x
=
*
p
<<
7
;
while
(
--
len
>=
0
)
{
x
=
(
1000003
*
x
)
^
*
p
++
;
}
x
^=
str
.
size
();
if
(
x
==
-
1
)
{
x
=
-
2
;
}
return
x
;
}
int
create_req
(
Request
*
req
,
const
std
::
vector
<
std
::
string
>&
data_list
,
int
data_index
,
int
batch_size
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
CTRReqInstance
*
ins
=
req
->
add_instances
();
if
(
!
ins
)
{
LOG
(
ERROR
)
<<
"Failed create req instance"
;
return
-
1
;
}
// add data
std
::
vector
<
std
::
string
>
feature_list
=
split
(
data_list
[
data_index
+
i
],
"
\t
"
);
for
(
int
fi
=
0
;
fi
<
dense_num
;
fi
++
)
{
if
(
feature_list
[
fi
]
==
""
)
{
ins
->
add_dense_ids
(
0.0
);
}
else
{
float
dense_id
=
std
::
stof
(
feature_list
[
fi
]);
dense_id
=
(
dense_id
-
cont_min
[
fi
])
/
cont_diff
[
fi
];
ins
->
add_dense_ids
(
dense_id
);
}
}
for
(
int
fi
=
dense_num
;
fi
<
(
dense_num
+
sparse_num
);
fi
++
)
{
int64_t
sparse_id
=
hash
(
std
::
to_string
(
fi
)
+
feature_list
[
fi
])
%
hash_dim
;
if
(
sparse_id
<
0
)
{
// diff between c++ and python
sparse_id
+=
hash_dim
;
}
ins
->
add_sparse_ids
(
sparse_id
);
}
}
return
0
;
}
void
print_res
(
const
Request
&
req
,
const
Response
&
res
,
std
::
string
route_tag
,
uint64_t
mid_ms
,
uint64_t
elapse_ms
)
{
if
(
res
.
err_code
()
!=
0
)
{
LOG
(
ERROR
)
<<
"Get result fail :"
<<
res
.
err_msg
();
return
;
}
for
(
uint32_t
i
=
0
;
i
<
res
.
predictions_size
();
++
i
)
{
const
CTRResInstance
&
res_ins
=
res
.
predictions
(
i
);
std
::
ostringstream
oss
;
oss
<<
res_ins
.
prob0
()
<<
" "
;
LOG
(
INFO
)
<<
"Receive result "
<<
oss
.
str
();
}
LOG
(
INFO
)
<<
"Succ call predictor[ctr_prediction_service], the tag is: "
<<
route_tag
<<
", mid_ms: "
<<
mid_ms
<<
", elapse_ms: "
<<
elapse_ms
;
}
void
thread_worker
(
PredictorApi
*
api
,
int
thread_id
,
int
batch_size
,
int
server_concurrency
,
const
std
::
vector
<
std
::
string
>&
data_list
)
{
// init
Request
req
;
Response
res
;
api
->
thrd_initialize
();
std
::
string
line
;
int
turns
=
0
;
while
(
turns
<
1000
)
{
///
timeval
start
;
gettimeofday
(
&
start
,
NULL
);
api
->
thrd_clear
();
Predictor
*
predictor
=
api
->
fetch_predictor
(
"ctr_prediction_service"
);
if
(
!
predictor
)
{
LOG
(
ERROR
)
<<
"Failed fetch predictor: ctr_prediction_service"
;
return
;
}
req
.
Clear
();
res
.
Clear
();
timeval
mid
;
gettimeofday
(
&
mid
,
NULL
);
uint64_t
mid_ms
=
(
mid
.
tv_sec
*
1000
+
mid
.
tv_usec
/
1000
)
-
(
start
.
tv_sec
*
1000
+
start
.
tv_usec
/
1000
);
// wait for other thread
while
(
g_concurrency
.
load
()
>=
server_concurrency
)
{
}
g_concurrency
++
;
LOG
(
INFO
)
<<
"Current concurrency "
<<
g_concurrency
.
load
();
int
data_index
=
turns
*
batch_size
;
if
(
create_req
(
&
req
,
data_list
,
data_index
,
batch_size
)
!=
0
)
{
return
;
}
timeval
start_run
;
gettimeofday
(
&
start_run
,
NULL
);
if
(
predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req:"
<<
req
.
ShortDebugString
();
return
;
}
timeval
end
;
gettimeofday
(
&
end
,
NULL
);
uint64_t
elapse_ms
=
(
end
.
tv_sec
*
1000
+
end
.
tv_usec
/
1000
)
-
(
start_run
.
tv_sec
*
1000
+
start_run
.
tv_usec
/
1000
);
response_time
[
thread_id
].
push_back
(
elapse_ms
);
print_res
(
req
,
res
,
predictor
->
tag
(),
mid_ms
,
elapse_ms
);
g_concurrency
--
;
LOG
(
INFO
)
<<
"Done. Current concurrency "
<<
g_concurrency
.
load
();
turns
++
;
}
//
api
->
thrd_finalize
();
}
void
calc_time
(
int
server_concurrency
,
int
batch_size
)
{
std
::
vector
<
int
>
time_list
;
for
(
auto
a
:
response_time
)
{
time_list
.
insert
(
time_list
.
end
(),
a
.
begin
(),
a
.
end
());
}
LOG
(
INFO
)
<<
"Total request : "
<<
(
time_list
.
size
());
LOG
(
INFO
)
<<
"Batch size : "
<<
batch_size
;
LOG
(
INFO
)
<<
"Max concurrency : "
<<
server_concurrency
;
float
total_time
=
0
;
float
max_time
=
0
;
float
min_time
=
1000000
;
for
(
int
i
=
0
;
i
<
time_list
.
size
();
++
i
)
{
total_time
+=
time_list
[
i
];
if
(
time_list
[
i
]
>
max_time
)
max_time
=
time_list
[
i
];
if
(
time_list
[
i
]
<
min_time
)
min_time
=
time_list
[
i
];
}
float
mean_time
=
total_time
/
(
time_list
.
size
());
float
var_time
;
for
(
int
i
=
0
;
i
<
time_list
.
size
();
++
i
)
{
var_time
+=
(
time_list
[
i
]
-
mean_time
)
*
(
time_list
[
i
]
-
mean_time
);
}
var_time
=
var_time
/
time_list
.
size
();
LOG
(
INFO
)
<<
"Total time : "
<<
total_time
/
server_concurrency
<<
" Variance : "
<<
var_time
<<
" Max time : "
<<
max_time
<<
" Min time : "
<<
min_time
;
float
qps
=
0.0
;
if
(
total_time
>
0
)
qps
=
(
time_list
.
size
()
*
1000
)
/
(
total_time
/
server_concurrency
);
LOG
(
INFO
)
<<
"QPS: "
<<
qps
<<
"/s"
;
LOG
(
INFO
)
<<
"Latency statistics: "
;
sort
(
time_list
.
begin
(),
time_list
.
end
());
int
percent_pos_50
=
time_list
.
size
()
*
0.5
;
int
percent_pos_80
=
time_list
.
size
()
*
0.8
;
int
percent_pos_90
=
time_list
.
size
()
*
0.9
;
int
percent_pos_99
=
time_list
.
size
()
*
0.99
;
int
percent_pos_999
=
time_list
.
size
()
*
0.999
;
if
(
time_list
.
size
()
!=
0
)
{
LOG
(
INFO
)
<<
"Mean time : "
<<
mean_time
;
LOG
(
INFO
)
<<
"50 percent ms: "
<<
time_list
[
percent_pos_50
];
LOG
(
INFO
)
<<
"80 percent ms: "
<<
time_list
[
percent_pos_80
];
LOG
(
INFO
)
<<
"90 percent ms: "
<<
time_list
[
percent_pos_90
];
LOG
(
INFO
)
<<
"99 percent ms: "
<<
time_list
[
percent_pos_99
];
LOG
(
INFO
)
<<
"99.9 percent ms: "
<<
time_list
[
percent_pos_999
];
}
else
{
LOG
(
INFO
)
<<
"N/A"
;
}
}
int
main
(
int
argc
,
char
**
argv
)
{
// initialize
PredictorApi
api
;
response_time
.
resize
(
thread_num
);
int
server_concurrency
=
thread_num
;
// log set
#ifdef BCLOUD
logging
::
LoggingSettings
settings
;
settings
.
logging_dest
=
logging
::
LOG_TO_FILE
;
std
::
string
log_filename
(
argv
[
0
]);
log_filename
=
log_filename
.
substr
(
log_filename
.
find_last_of
(
'/'
)
+
1
);
settings
.
log_file
=
(
std
::
string
(
"./log/"
)
+
log_filename
+
".log"
).
c_str
();
settings
.
delete_old
=
logging
::
DELETE_OLD_LOG_FILE
;
logging
::
InitLogging
(
settings
);
logging
::
ComlogSinkOptions
cso
;
cso
.
process_name
=
log_filename
;
cso
.
enable_wf_device
=
true
;
logging
::
ComlogSink
::
GetInstance
()
->
Setup
(
&
cso
);
#else
struct
stat
st_buf
;
int
ret
=
0
;
if
((
ret
=
stat
(
"./log"
,
&
st_buf
))
!=
0
)
{
mkdir
(
"./log"
,
0777
);
ret
=
stat
(
"./log"
,
&
st_buf
);
if
(
ret
!=
0
)
{
LOG
(
WARNING
)
<<
"Log path ./log not exist, and create fail"
;
return
-
1
;
}
}
FLAGS_log_dir
=
"./log"
;
google
::
InitGoogleLogging
(
strdup
(
argv
[
0
]));
FLAGS_logbufsecs
=
0
;
FLAGS_logbuflevel
=
-
1
;
#endif
// predictor conf
if
(
api
.
create
(
"./conf"
,
"predictors.prototxt"
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed create predictors api!"
;
return
-
1
;
}
// read data
std
::
ifstream
data_file
(
data_filename
);
if
(
!
data_file
)
{
std
::
cout
<<
"read file error
\n
"
<<
std
::
endl
;
return
-
1
;
}
std
::
vector
<
std
::
string
>
data_list
;
std
::
string
line
;
while
(
getline
(
data_file
,
line
))
{
data_list
.
push_back
(
line
);
}
// create threads
std
::
vector
<
std
::
thread
*>
thread_pool
;
for
(
int
i
=
0
;
i
<
server_concurrency
;
++
i
)
{
thread_pool
.
push_back
(
new
std
::
thread
(
thread_worker
,
&
api
,
i
,
batch_size
,
server_concurrency
,
std
::
ref
(
data_list
)));
}
for
(
int
i
=
0
;
i
<
server_concurrency
;
++
i
)
{
thread_pool
[
i
]
->
join
();
delete
thread_pool
[
i
];
}
calc_time
(
server_concurrency
,
batch_size
);
api
.
destroy
();
return
0
;
}
demo-serving/CMakeLists.txt
浏览文件 @
c29df1db
...
...
@@ -18,7 +18,7 @@ include(op/CMakeLists.txt)
include
(
proto/CMakeLists.txt
)
add_executable
(
serving
${
serving_srcs
}
)
add_dependencies
(
serving pdcodegen fluid_cpu_engine pdserving paddle_fluid
opencv_imgcodecs
)
opencv_imgcodecs
cube-api
)
if
(
WITH_GPU
)
add_dependencies
(
serving fluid_gpu_engine
)
endif
()
...
...
@@ -40,6 +40,7 @@ target_link_libraries(serving opencv_imgcodecs
${
opencv_depend_libs
}
)
target_link_libraries
(
serving pdserving
)
target_link_libraries
(
serving cube-api
)
target_link_libraries
(
serving kvdb rocksdb
)
...
...
demo-serving/conf/cube.conf
0 → 100644
浏览文件 @
c29df1db
[{
"dict_name"
:
"dict"
,
"shard"
:
2
,
"dup"
:
1
,
"timeout"
:
200
,
"retry"
:
3
,
"backup_request"
:
100
,
"type"
:
"ipport_list"
,
"load_balancer"
:
"rr"
,
"nodes"
: [{
"ipport_list"
:
"list://xxx.xxx.xxx.xxx:8000"
},{
"ipport_list"
:
"list://xxx.xxx.xxx.xxx:8000"
}]
}]
demo-serving/conf/gflags.conf
浏览文件 @
c29df1db
--
enable_model_toolkit
--
enable_cube
=
false
demo-serving/conf/resource.prototxt
浏览文件 @
c29df1db
model_toolkit_path: "./conf/"
model_toolkit_file: "model_toolkit.prototxt"
cube_config_file: "./conf/cube.conf"
demo-serving/op/ctr_prediction_op.cpp
浏览文件 @
c29df1db
...
...
@@ -15,6 +15,7 @@
#include "demo-serving/op/ctr_prediction_op.h"
#include <algorithm>
#include <string>
#include "cube/cube-api/include/cube_api.h"
#include "predictor/framework/infer.h"
#include "predictor/framework/memory.h"
...
...
@@ -41,12 +42,8 @@ const int CTR_PREDICTION_DENSE_SLOT_ID = 26;
const
int
CTR_PREDICTION_DENSE_DIM
=
13
;
const
int
CTR_PREDICTION_EMBEDDING_SIZE
=
10
;
#if 1
struct
CubeValue
{
int
error
;
std
::
string
buff
;
};
#endif
// dict name
const
char
dict_name
[]
=
"dict"
;
void
fill_response_with_message
(
Response
*
response
,
int
err_code
,
...
...
@@ -83,8 +80,8 @@ int CTRPredictionOp::inference() {
}
// Query cube API for sparse embeddings
std
::
vector
<
int64_t
>
keys
;
std
::
vector
<
CubeValue
>
values
;
std
::
vector
<
u
int64_t
>
keys
;
std
::
vector
<
rec
::
mcube
::
CubeValue
>
values
;
for
(
uint32_t
si
=
0
;
si
<
sample_size
;
++
si
)
{
const
CTRReqInstance
&
req_instance
=
req
->
instances
(
si
);
...
...
@@ -100,24 +97,13 @@ int CTRPredictionOp::inference() {
}
}
#if 0
mCube::CubeAPI* cube = CubeAPI::instance();
int ret = cube->seek(keys, values);
rec
::
mcube
::
CubeAPI
*
cube
=
rec
::
mcube
::
CubeAPI
::
instance
();
int
ret
=
cube
->
seek
(
dict_name
,
keys
,
&
values
);
if
(
ret
!=
0
)
{
fill_response_with_message
(
res
,
-
1
,
"Query cube for embeddings error"
);
LOG
(
ERROR
)
<<
"Query cube for embeddings error"
;
return
-
1
;
}
#else
float
buff
[
CTR_PREDICTION_EMBEDDING_SIZE
]
=
{
0.01
,
0.02
,
0.03
,
0.04
,
0.05
,
0.06
,
0.07
,
0.08
,
0.09
,
0.00
};
for
(
int
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
CubeValue
value
;
value
.
error
=
0
;
value
.
buff
=
std
::
string
(
reinterpret_cast
<
char
*>
(
buff
),
sizeof
(
buff
));
values
.
push_back
(
value
);
}
#endif
// Sparse embeddings
for
(
int
i
=
0
;
i
<
CTR_PREDICTION_SPARSE_SLOTS
;
++
i
)
{
...
...
predictor/common/constant.cpp
浏览文件 @
c29df1db
...
...
@@ -40,6 +40,7 @@ DEFINE_int32(
DEFINE_int32
(
reload_interval_s
,
10
,
""
);
DEFINE_bool
(
enable_model_toolkit
,
false
,
"enable model toolkit"
);
DEFINE_string
(
enable_protocol_list
,
"baidu_std"
,
"set protocol list"
);
DEFINE_bool
(
enable_cube
,
false
,
"enable cube"
);
const
char
*
START_OP_NAME
=
"startup_op"
;
}
// namespace predictor
...
...
predictor/common/constant.h
浏览文件 @
c29df1db
...
...
@@ -39,6 +39,9 @@ DECLARE_int32(num_threads);
DECLARE_int32
(
reload_interval_s
);
DECLARE_bool
(
enable_model_toolkit
);
DECLARE_string
(
enable_protocol_list
);
DECLARE_bool
(
enable_cube
);
DECLARE_string
(
cube_config_path
);
DECLARE_string
(
cube_config_file
);
// STATIC Variables
extern
const
char
*
START_OP_NAME
;
...
...
predictor/framework/resource.cpp
浏览文件 @
c29df1db
...
...
@@ -22,7 +22,7 @@ namespace paddle_serving {
namespace
predictor
{
using
configure
::
ResourceConf
;
using
rec
::
mcube
::
CubeAPI
;
// __thread bool p_thread_initialized = false;
static
void
dynamic_resource_deleter
(
void
*
d
)
{
...
...
@@ -91,6 +91,44 @@ int Resource::initialize(const std::string& path, const std::string& file) {
return
0
;
}
int
Resource
::
cube_initialize
(
const
std
::
string
&
path
,
const
std
::
string
&
file
)
{
// cube
if
(
!
FLAGS_enable_cube
)
{
return
0
;
}
ResourceConf
resource_conf
;
if
(
configure
::
read_proto_conf
(
path
,
file
,
&
resource_conf
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed initialize resource from: "
<<
path
<<
"/"
<<
file
;
return
-
1
;
}
int
err
=
0
;
std
::
string
cube_config_path
=
resource_conf
.
cube_config_path
();
if
(
err
!=
0
)
{
LOG
(
ERROR
)
<<
"reade cube_config_path failed, path["
<<
path
<<
"], file["
<<
cube_config_path
<<
"]"
;
return
-
1
;
}
std
::
string
cube_config_file
=
resource_conf
.
cube_config_file
();
if
(
err
!=
0
)
{
LOG
(
ERROR
)
<<
"reade cube_config_file failed, path["
<<
path
<<
"], file["
<<
cube_config_file
<<
"]"
;
return
-
1
;
}
err
=
CubeAPI
::
instance
()
->
init
(
cube_config_file
.
c_str
());
if
(
err
!=
0
)
{
LOG
(
ERROR
)
<<
"failed initialize cube, config: "
<<
cube_config_path
<<
"/"
<<
cube_config_file
<<
" error code : "
<<
err
;
return
-
1
;
}
LOG
(
INFO
)
<<
"Successfully initialize cube"
;
return
0
;
}
int
Resource
::
thread_initialize
()
{
// mempool
if
(
MempoolWrapper
::
instance
().
thread_initialize
()
!=
0
)
{
...
...
@@ -192,7 +230,10 @@ int Resource::finalize() {
LOG
(
ERROR
)
<<
"Failed proc finalize infer manager"
;
return
-
1
;
}
if
(
CubeAPI
::
instance
()
->
destroy
()
!=
0
)
{
LOG
(
ERROR
)
<<
"Destory cube api failed "
;
return
-
1
;
}
THREAD_KEY_DELETE
(
_tls_bspec_key
);
return
0
;
...
...
predictor/framework/resource.h
浏览文件 @
c29df1db
...
...
@@ -13,7 +13,9 @@
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include "cube/cube-api/include/cube_api.h"
#include "kvdb/paddle_rocksdb.h"
#include "predictor/common/inner_common.h"
#include "predictor/framework/memory.h"
...
...
@@ -45,7 +47,7 @@ class Resource {
}
int
initialize
(
const
std
::
string
&
path
,
const
std
::
string
&
file
);
int
cube_initialize
(
const
std
::
string
&
path
,
const
std
::
string
&
file
);
int
thread_initialize
();
int
thread_clear
();
...
...
predictor/src/pdserving.cpp
浏览文件 @
c29df1db
...
...
@@ -209,6 +209,14 @@ int main(int argc, char** argv) {
}
LOG
(
INFO
)
<<
"Succ call pthread worker start function"
;
if
(
Resource
::
instance
().
cube_initialize
(
FLAGS_resource_path
,
FLAGS_resource_file
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed initialize cube, conf: "
<<
FLAGS_resource_path
<<
"/"
<<
FLAGS_resource_file
;
return
-
1
;
}
LOG
(
INFO
)
<<
"Succ initialize cube"
;
FLAGS_logtostderr
=
false
;
if
(
ServerManager
::
instance
().
start_and_wait
()
!=
0
)
{
...
...
sdk-cpp/proto/ctr_prediction.proto
0 → 100644
浏览文件 @
c29df1db
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax
=
"proto2"
;
import
"pds_option.proto"
;
import
"builtin_format.proto"
;
package
baidu
.
paddle_serving.predictor.ctr_prediction
;
option
cc_generic_services
=
true
;
message
CTRReqInstance
{
repeated
int64
sparse_ids
=
1
;
repeated
float
dense_ids
=
2
;
};
message
Request
{
repeated
CTRReqInstance
instances
=
1
;
};
message
CTRResInstance
{
required
float
prob0
=
1
;
required
float
prob1
=
2
;
};
message
Response
{
repeated
CTRResInstance
predictions
=
1
;
required
int64
err_code
=
2
;
optional
string
err_msg
=
3
;
};
service
CTRPredictionService
{
rpc
inference
(
Request
)
returns
(
Response
);
rpc
debug
(
Request
)
returns
(
Response
);
option
(
pds.options
)
.
generate_stub
=
true
;
};
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录