未验证 提交 c1e9e00c 编写于 作者: J Jiawei Wang 提交者: GitHub

Merge pull request #1037 from wangjiawei04/v0.5.0

cherry-pick #1036 #1035 #1034 #1033
此差异已折叠。
此差异已折叠。
# How to Convert Paddle Inference Model To Paddle Serving Format
([简体中文](./INFERENCE_TO_SERVING_CN.md)|English)
you can use a build-in python module called `paddle_serving_client.convert` to convert it.
```python
python -m paddle_serving_client.convert --dirname ./your_inference_model_dir
```
Arguments are the same as `inference_model_to_serving` API.
| Argument | Type | Default | Description |
|--------------|------|-----------|--------------------------------|
| `dirname` | str | - | Path of saved model files. Program file and parameter files are saved in this directory. |
| `serving_server` | str | `"serving_server"` | The path of model files and configuration files for server. |
| `serving_client` | str | `"serving_client"` | The path of configuration files for client. |
| `model_filename` | str | None | The name of file to load the inference program. If it is None, the default filename `__model__` will be used. |
| `params_filename` | str | None | The name of file to load all parameters. It is only used for the case that all parameters were saved in a single binary file. If parameters were saved in separate files, set it as None. |
# 如何从Paddle保存的预测模型转为Paddle Serving格式可部署的模型
([English](./INFERENCE_TO_SERVING.md)|简体中文)
你可以使用Paddle Serving提供的名为`paddle_serving_client.convert`的内置模块进行转换。
```python
python -m paddle_serving_client.convert --dirname ./your_inference_model_dir
```
模块参数与`inference_model_to_serving`接口参数相同。
| 参数 | 类型 | 默认值 | 描述 |
|--------------|------|-----------|--------------------------------|
| `dirname` | str | - | 需要转换的模型文件存储路径,Program结构文件和参数文件均保存在此目录。|
| `serving_server` | str | `"serving_server"` | 转换后的模型文件和配置文件的存储路径。默认值为serving_server |
| `serving_client` | str | `"serving_client"` | 转换后的客户端配置文件存储路径。默认值为serving_client |
| `model_filename` | str | None | 存储需要转换的模型Inference Program结构的文件名称。如果设置为None,则使用 `__model__` 作为默认的文件名 |
| `params_filename` | str | None | 存储需要转换的模型所有参数的文件名称。当且仅当所有模型参数被保存在一个单独的>二进制文件中,它才需要被指定。如果模型参数是存储在各自分离的文件中,设置它的值为None |
......@@ -11,14 +11,16 @@ This example use model [BERT Chinese Model](https://www.paddlepaddle.org.cn/hubd
Install paddlehub first
```
pip install paddlehub
pip3 install paddlehub
```
run
```
python prepare_model.py 128
python3 prepare_model.py 128
```
**PaddleHub only support Python 3.5+**
the 128 in the command above means max_seq_len in BERT model, which is the length of sample after preprocessing.
the config file and model file for server side are saved in the folder bert_seq128_model.
the config file generated for client side is saved in the folder bert_seq128_client.
......@@ -28,8 +30,9 @@ You can also download the above model from BOS(max_seq_len=128). After decompres
```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
mv bert_chinese_L-12_H-768_A-12_model bert_seq128_model
mv bert_chinese_L-12_H-768_A-12_client bert_seq128_client
```
if your model is bert_chinese_L-12_H-768_A-12_model, replace the 'bert_seq128_model' field in the following command with 'bert_chinese_L-12_H-768_A-12_model',replace 'bert_seq128_client' with 'bert_chinese_L-12_H-768_A-12_client'.
### Getting Dict and Sample Dataset
......
......@@ -10,11 +10,11 @@
示例中采用[Paddlehub](https://github.com/PaddlePaddle/PaddleHub)中的[BERT中文模型](https://www.paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel)
请先安装paddlehub
```
pip install paddlehub
pip3 install paddlehub
```
执行
```
python prepare_model.py 128
python3 prepare_model.py 128
```
参数128表示BERT模型中的max_seq_len,即预处理后的样本长度。
生成server端配置文件与模型文件,存放在bert_seq128_model文件夹。
......@@ -25,9 +25,9 @@ python prepare_model.py 128
```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
mv bert_chinese_L-12_H-768_A-12_model bert_seq128_model
mv bert_chinese_L-12_H-768_A-12_client bert_seq128_client
```
若使用bert_chinese_L-12_H-768_A-12_model模型,将下面命令中的bert_seq128_model字段替换为bert_chinese_L-12_H-768_A-12_model,bert_seq128_client字段替换为bert_chinese_L-12_H-768_A-12_client.
### 获取词典和样例数据
......
......@@ -12,6 +12,7 @@ Paddle Detection provides a large number of [Model Zoo](https://github.com/Paddl
### Serving example
Several examples of PaddleDetection models used in Serving are given in this folder
All examples support TensorRT.
-[Faster RCNN](./faster_rcnn_r50_fpn_1x_coco)
-[PPYOLO](./ppyolo_r50vd_dcn_1x_coco)
......
......@@ -13,6 +13,9 @@ tar xf faster_rcnn_r50_fpn_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction
```
python test_client.py 000000570688.jpg
......
......@@ -13,6 +13,7 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/
tar xf faster_rcnn_r50_fpn_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model pddet_serving_model --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
......
......@@ -13,6 +13,8 @@ tar xf ppyolo_r50vd_dcn_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction
```
python test_client.py 000000570688.jpg
......
......@@ -14,6 +14,8 @@ tar xf ppyolo_r50vd_dcn_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model pddet_serving_model --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
python test_client.py 000000570688.jpg
......
......@@ -12,6 +12,7 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/
tar xf ttfnet_darknet53_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction
```
......
......@@ -14,6 +14,8 @@ tar xf ttfnet_darknet53_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model pddet_serving_model --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
python test_client.py 000000570688.jpg
......
......@@ -13,6 +13,8 @@ tar xf yolov3_darknet53_270e_coco.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction
```
python test_client.py 000000570688.jpg
......
......@@ -14,6 +14,8 @@ tar xf yolov3_darknet53_270e_coco.tar
python -m paddle_serving_server_gpu.serve --model pddet_serving_model --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
python test_client.py 000000570688.jpg
......
# Imagenet Pipeline WebService
这里以 Uci 服务为例来介绍 Pipeline WebService 的使用。
这里以 Imagenet 服务为例来介绍 Pipeline WebService 的使用。
## 获取模型
```
......@@ -10,10 +10,11 @@ sh get_model.sh
## 启动服务
```
python web_service.py &>log.txt &
python resnet50_web_service.py &>log.txt &
```
## 测试
```
curl -X POST -k http://localhost:18082/uci/prediction -d '{"key": ["x"], "value": ["0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332"]}'
python pipeline_rpc_client.py
```
......@@ -152,8 +152,8 @@ class MainService(BaseHTTPRequestHandler):
if "key" not in post_data:
return False
else:
key = base64.b64decode(post_data["key"])
with open(args.model + "/key", "w") as f:
key = base64.b64decode(post_data["key"].encode())
with open(args.model + "/key", "wb") as f:
f.write(key)
return True
......@@ -161,8 +161,8 @@ class MainService(BaseHTTPRequestHandler):
if "key" not in post_data:
return False
else:
key = base64.b64decode(post_data["key"])
with open(args.model + "/key", "r") as f:
key = base64.b64decode(post_data["key"].encode())
with open(args.model + "/key", "rb") as f:
cur_key = f.read()
return (key == cur_key)
......@@ -203,7 +203,7 @@ class MainService(BaseHTTPRequestHandler):
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(json.dumps(response))
self.wfile.write(json.dumps(response).encode())
if __name__ == "__main__":
......
......@@ -767,7 +767,7 @@ class ThreadChannel(Queue.PriorityQueue):
while self._stop is False and self._consumer_cursors[
op_name] - self._base_cursor >= len(self._output_buf):
try:
channeldata = self.get(timeout=0)
channeldata = self.get(timeout=0)[1]
self._output_buf.append(channeldata)
list_values = list(channeldata.values())
_LOGGER.debug(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册