Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
bec426ab
S
Serving
项目概览
PaddlePaddle
/
Serving
接近 2 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bec426ab
编写于
8月 27, 2021
作者:
S
ShiningZhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix client: add gen_proto&parse_proto
上级
6a7a29ac
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
281 addition
and
248 deletion
+281
-248
core/general-client/include/client.h
core/general-client/include/client.h
+26
-23
core/general-client/src/brpc_client.cpp
core/general-client/src/brpc_client.cpp
+2
-224
core/general-client/src/client.cpp
core/general-client/src/client.cpp
+253
-1
未找到文件。
core/general-client/include/client.h
浏览文件 @
bec426ab
...
...
@@ -17,9 +17,16 @@
#include <vector>
#include <map>
#include <sstream>
#include <memory>
namespace
baidu
{
namespace
paddle_serving
{
namespace
predictor
{
namespace
general_model
{
class
Request
;
class
Response
;
}
}
namespace
client
{
class
PredictorInputs
;
...
...
@@ -127,14 +134,7 @@ class PredictorData {
return
&
_lod_map
;
};
virtual
std
::
string
print
()
{
std
::
string
res
;
res
.
append
(
map2string
<
std
::
string
,
float
>
(
_float_data_map
));
res
.
append
(
map2string
<
std
::
string
,
int64_t
>
(
_int64_data_map
));
res
.
append
(
map2string
<
std
::
string
,
int32_t
>
(
_int32_data_map
));
res
.
append
(
map2string
<
std
::
string
,
std
::
string
>
(
_string_data_map
));
return
res
;
}
virtual
std
::
string
print
();
private:
template
<
typename
T1
,
typename
T2
>
...
...
@@ -195,6 +195,11 @@ class PredictorInputs : public PredictorData {
public:
PredictorInputs
()
{};
virtual
~
PredictorInputs
()
{};
static
int
gen_proto
(
const
PredictorInputs
&
inputs
,
const
std
::
map
<
std
::
string
,
int
>&
feed_name_to_idx
,
const
std
::
vector
<
std
::
string
>&
feed_name
,
predictor
::
general_model
::
Request
&
req
);
};
class
PredictorOutputs
{
...
...
@@ -207,31 +212,29 @@ class PredictorOutputs {
PredictorOutputs
()
{};
virtual
~
PredictorOutputs
()
{};
virtual
std
::
vector
<
PredictorOutputs
::
PredictorOutput
>&
datas
()
{
virtual
std
::
vector
<
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>
>&
datas
()
{
return
_datas
;
};
virtual
std
::
vector
<
PredictorOutputs
::
PredictorOutput
>*
mutable_datas
()
{
virtual
std
::
vector
<
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>
>*
mutable_datas
()
{
return
&
_datas
;
};
virtual
void
add_data
(
PredictorOutputs
::
PredictorOutput
&
&
data
)
{
_datas
.
emplace
_back
(
data
);
virtual
void
add_data
(
const
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>
&
data
)
{
_datas
.
push
_back
(
data
);
};
virtual
std
::
string
print
()
{
std
::
string
res
=
""
;
for
(
size_t
i
=
0
;
i
<
_datas
.
size
();
++
i
)
{
res
.
append
(
_datas
[
i
].
engine_name
);
res
.
append
(
":"
);
res
.
append
(
_datas
[
i
].
data
.
print
());
res
.
append
(
"
\n
"
);
}
return
res
;
}
virtual
std
::
string
print
();
virtual
void
clear
();
static
int
parse_proto
(
const
predictor
::
general_model
::
Response
&
res
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
std
::
map
<
std
::
string
,
int
>&
fetch_name_to_type
,
PredictorOutputs
&
outputs
);
protected:
std
::
vector
<
PredictorOutputs
::
PredictorOutput
>
_datas
;
std
::
vector
<
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>
>
_datas
;
};
}
// namespace client
...
...
core/general-client/src/brpc_client.cpp
浏览文件 @
bec426ab
...
...
@@ -81,228 +81,6 @@ std::string ServingBrpcClient::gen_desc(const std::string server_port) {
return
sdk_conf
.
SerializePartialAsString
();
}
static
int
pre_process
(
const
PredictorInputs
&
inputs
,
const
std
::
map
<
std
::
string
,
int
>&
feed_name_to_idx
,
const
std
::
vector
<
std
::
string
>&
feed_name
,
Request
&
req
)
{
const
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>&
float_feed_map
=
inputs
.
float_data_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>&
int64_feed_map
=
inputs
.
int64_data_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>&
int32_feed_map
=
inputs
.
int_data_map
();
const
std
::
map
<
std
::
string
,
std
::
string
>&
string_feed_map
=
inputs
.
string_data_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
shape_map
=
inputs
.
shape_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
lod_map
=
inputs
.
lod_map
();
VLOG
(
2
)
<<
"float feed name size: "
<<
float_feed_map
.
size
();
VLOG
(
2
)
<<
"int feed name size: "
<<
int64_feed_map
.
size
();
VLOG
(
2
)
<<
"string feed name size: "
<<
string_feed_map
.
size
();
// batch is already in Tensor.
for
(
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>::
const_iterator
iter
=
float_feed_map
.
begin
();
iter
!=
float_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
vector
<
float
>&
float_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
float_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
float_lod
=
lod_map
.
at
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
VLOG
(
2
)
<<
"prepare float feed "
<<
name
<<
" idx "
<<
idx
;
int
total_number
=
float_data
.
size
();
Tensor
*
tensor
=
req
.
add_tensor
();
VLOG
(
2
)
<<
"prepare float feed "
<<
name
<<
" shape size "
<<
float_shape
.
size
();
for
(
uint32_t
j
=
0
;
j
<
float_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
float_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
float_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
float_lod
[
j
]);
}
tensor
->
set_elem_type
(
P_FLOAT32
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
mutable_float_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_float_data
()
->
mutable_data
(),
float_data
.
data
(),
total_number
*
sizeof
(
float
));
}
for
(
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>::
const_iterator
iter
=
int64_feed_map
.
begin
();
iter
!=
int64_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
vector
<
int64_t
>&
int64_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
int64_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
int64_lod
=
lod_map
.
at
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
Tensor
*
tensor
=
req
.
add_tensor
();
int
total_number
=
int64_data
.
size
();
for
(
uint32_t
j
=
0
;
j
<
int64_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
int64_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
int64_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
int64_lod
[
j
]);
}
tensor
->
set_elem_type
(
P_INT64
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
mutable_int64_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_int64_data
()
->
mutable_data
(),
int64_data
.
data
(),
total_number
*
sizeof
(
int64_t
));
}
for
(
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>::
const_iterator
iter
=
int32_feed_map
.
begin
();
iter
!=
int32_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
vector
<
int32_t
>&
int32_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
int32_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
int32_lod
=
lod_map
.
at
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
Tensor
*
tensor
=
req
.
add_tensor
();
int
total_number
=
int32_data
.
size
();
for
(
uint32_t
j
=
0
;
j
<
int32_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
int32_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
int32_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
int32_lod
[
j
]);
}
tensor
->
set_elem_type
(
P_INT32
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
mutable_int_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_int_data
()
->
mutable_data
(),
int32_data
.
data
(),
total_number
*
sizeof
(
int32_t
));
}
for
(
std
::
map
<
std
::
string
,
std
::
string
>::
const_iterator
iter
=
string_feed_map
.
begin
();
iter
!=
string_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
string
&
string_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
string_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
string_lod
=
lod_map
.
at
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
Tensor
*
tensor
=
req
.
add_tensor
();
for
(
uint32_t
j
=
0
;
j
<
string_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
string_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
string_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
string_lod
[
j
]);
}
tensor
->
set_elem_type
(
P_STRING
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
const
int
string_shape_size
=
string_shape
.
size
();
// string_shape[vec_idx] = [1];cause numpy has no datatype of string.
// we pass string via vector<vector<string> >.
if
(
string_shape_size
!=
1
)
{
LOG
(
ERROR
)
<<
"string_shape_size should be 1-D, but received is : "
<<
string_shape_size
;
return
-
1
;
}
switch
(
string_shape_size
)
{
case
1
:
{
tensor
->
add_data
(
string_data
);
break
;
}
}
}
return
0
;
}
static
int
post_process
(
const
Response
&
res
,
std
::
vector
<
std
::
string
>&
fetch_name
,
std
::
map
<
std
::
string
,
int
>&
fetch_name_to_type
,
PredictorOutputs
&
outputs
)
{
VLOG
(
2
)
<<
"get model output num"
;
uint32_t
model_num
=
res
.
outputs_size
();
VLOG
(
2
)
<<
"model num: "
<<
model_num
;
for
(
uint32_t
m_idx
=
0
;
m_idx
<
model_num
;
++
m_idx
)
{
VLOG
(
2
)
<<
"process model output index: "
<<
m_idx
;
auto
&
output
=
res
.
outputs
(
m_idx
);
PredictorOutputs
::
PredictorOutput
predictor_output
;
predictor_output
.
engine_name
=
output
.
engine_name
();
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>&
float_data_map
=
*
predictor_output
.
data
.
mutable_float_data_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>&
int64_data_map
=
*
predictor_output
.
data
.
mutable_int64_data_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>&
int32_data_map
=
*
predictor_output
.
data
.
mutable_int_data_map
();
std
::
map
<
std
::
string
,
std
::
string
>&
string_data_map
=
*
predictor_output
.
data
.
mutable_string_data_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
shape_map
=
*
predictor_output
.
data
.
mutable_shape_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
lod_map
=
*
predictor_output
.
data
.
mutable_lod_map
();
int
idx
=
0
;
for
(
auto
&
name
:
fetch_name
)
{
// int idx = _fetch_name_to_idx[name];
int
shape_size
=
output
.
tensor
(
idx
).
shape_size
();
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
" index "
<<
idx
<<
" shape size "
<<
shape_size
;
shape_map
[
name
].
resize
(
shape_size
);
for
(
int
i
=
0
;
i
<
shape_size
;
++
i
)
{
shape_map
[
name
][
i
]
=
output
.
tensor
(
idx
).
shape
(
i
);
}
int
lod_size
=
output
.
tensor
(
idx
).
lod_size
();
if
(
lod_size
>
0
)
{
lod_map
[
name
].
resize
(
lod_size
);
for
(
int
i
=
0
;
i
<
lod_size
;
++
i
)
{
lod_map
[
name
][
i
]
=
output
.
tensor
(
idx
).
lod
(
i
);
}
}
idx
+=
1
;
}
idx
=
0
;
for
(
auto
&
name
:
fetch_name
)
{
// int idx = _fetch_name_to_idx[name];
if
(
fetch_name_to_type
[
name
]
==
P_INT64
)
{
VLOG
(
2
)
<<
"ferch var "
<<
name
<<
"type int64"
;
int
size
=
output
.
tensor
(
idx
).
int64_data_size
();
int64_data_map
[
name
]
=
std
::
vector
<
int64_t
>
(
output
.
tensor
(
idx
).
int64_data
().
begin
(),
output
.
tensor
(
idx
).
int64_data
().
begin
()
+
size
);
}
else
if
(
fetch_name_to_type
[
name
]
==
P_FLOAT32
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type float"
;
int
size
=
output
.
tensor
(
idx
).
float_data_size
();
float_data_map
[
name
]
=
std
::
vector
<
float
>
(
output
.
tensor
(
idx
).
float_data
().
begin
(),
output
.
tensor
(
idx
).
float_data
().
begin
()
+
size
);
}
else
if
(
fetch_name_to_type
[
name
]
==
P_INT32
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type int32"
;
int
size
=
output
.
tensor
(
idx
).
int_data_size
();
int32_data_map
[
name
]
=
std
::
vector
<
int32_t
>
(
output
.
tensor
(
idx
).
int_data
().
begin
(),
output
.
tensor
(
idx
).
int_data
().
begin
()
+
size
);
}
idx
+=
1
;
}
outputs
.
add_data
(
std
::
move
(
predictor_output
));
}
return
0
;
}
int
ServingBrpcClient
::
predict
(
const
PredictorInputs
&
inputs
,
PredictorOutputs
&
outputs
,
std
::
vector
<
std
::
string
>&
fetch_name
,
...
...
@@ -327,7 +105,7 @@ int ServingBrpcClient::predict(const PredictorInputs& inputs,
req
.
add_fetch_var_names
(
name
);
}
if
(
pre_process
(
inputs
,
_feed_name_to_idx
,
_feed_name
,
req
)
!=
0
)
{
if
(
PredictorInputs
::
gen_proto
(
inputs
,
_feed_name_to_idx
,
_feed_name
,
req
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to preprocess req!"
;
return
-
1
;
}
...
...
@@ -354,7 +132,7 @@ int ServingBrpcClient::predict(const PredictorInputs& inputs,
client_infer_end
=
timeline
.
TimeStampUS
();
postprocess_start
=
client_infer_end
;
if
(
post_process
(
res
,
fetch_name
,
_fetch_name_to_type
,
outputs
)
!=
0
)
{
if
(
PredictorOutputs
::
parse_proto
(
res
,
fetch_name
,
_fetch_name_to_type
,
outputs
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to post_process res!"
;
return
-
1
;
}
...
...
core/general-client/src/client.cpp
浏览文件 @
bec426ab
...
...
@@ -14,11 +14,16 @@
#include "core/general-client/include/client.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/general_model_service.pb.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
client
{
using
configure
::
GeneralModelConfig
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
enum
ProtoDataType
{
P_INT64
,
P_FLOAT32
,
P_INT32
,
P_STRING
};
int
ServingClient
::
init
(
const
std
::
vector
<
std
::
string
>&
client_conf
,
const
std
::
string
server_port
)
{
...
...
@@ -134,6 +139,253 @@ void PredictorData::add_string_data(const std::string& data,
_lod_map
[
name
]
=
lod
;
}
}
// namespace general_model
std
::
string
PredictorData
::
print
()
{
std
::
string
res
;
res
.
append
(
map2string
<
std
::
string
,
float
>
(
_float_data_map
));
res
.
append
(
map2string
<
std
::
string
,
int64_t
>
(
_int64_data_map
));
res
.
append
(
map2string
<
std
::
string
,
int32_t
>
(
_int32_data_map
));
res
.
append
(
map2string
<
std
::
string
,
std
::
string
>
(
_string_data_map
));
return
res
;
}
int
PredictorInputs
::
gen_proto
(
const
PredictorInputs
&
inputs
,
const
std
::
map
<
std
::
string
,
int
>&
feed_name_to_idx
,
const
std
::
vector
<
std
::
string
>&
feed_name
,
Request
&
req
)
{
const
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>&
float_feed_map
=
inputs
.
float_data_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>&
int64_feed_map
=
inputs
.
int64_data_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>&
int32_feed_map
=
inputs
.
int_data_map
();
const
std
::
map
<
std
::
string
,
std
::
string
>&
string_feed_map
=
inputs
.
string_data_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
shape_map
=
inputs
.
shape_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
lod_map
=
inputs
.
lod_map
();
VLOG
(
2
)
<<
"float feed name size: "
<<
float_feed_map
.
size
();
VLOG
(
2
)
<<
"int feed name size: "
<<
int64_feed_map
.
size
();
VLOG
(
2
)
<<
"string feed name size: "
<<
string_feed_map
.
size
();
// batch is already in Tensor.
for
(
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>::
const_iterator
iter
=
float_feed_map
.
begin
();
iter
!=
float_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
vector
<
float
>&
float_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
float_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
float_lod
=
lod_map
.
at
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
VLOG
(
2
)
<<
"prepare float feed "
<<
name
<<
" idx "
<<
idx
;
int
total_number
=
float_data
.
size
();
Tensor
*
tensor
=
req
.
add_tensor
();
VLOG
(
2
)
<<
"prepare float feed "
<<
name
<<
" shape size "
<<
float_shape
.
size
();
for
(
uint32_t
j
=
0
;
j
<
float_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
float_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
float_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
float_lod
[
j
]);
}
tensor
->
set_elem_type
(
P_FLOAT32
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
mutable_float_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_float_data
()
->
mutable_data
(),
float_data
.
data
(),
total_number
*
sizeof
(
float
));
}
for
(
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>::
const_iterator
iter
=
int64_feed_map
.
begin
();
iter
!=
int64_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
vector
<
int64_t
>&
int64_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
int64_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
int64_lod
=
lod_map
.
at
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
Tensor
*
tensor
=
req
.
add_tensor
();
int
total_number
=
int64_data
.
size
();
for
(
uint32_t
j
=
0
;
j
<
int64_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
int64_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
int64_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
int64_lod
[
j
]);
}
tensor
->
set_elem_type
(
P_INT64
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
mutable_int64_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_int64_data
()
->
mutable_data
(),
int64_data
.
data
(),
total_number
*
sizeof
(
int64_t
));
}
for
(
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>::
const_iterator
iter
=
int32_feed_map
.
begin
();
iter
!=
int32_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
vector
<
int32_t
>&
int32_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
int32_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
int32_lod
=
lod_map
.
at
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
Tensor
*
tensor
=
req
.
add_tensor
();
int
total_number
=
int32_data
.
size
();
for
(
uint32_t
j
=
0
;
j
<
int32_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
int32_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
int32_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
int32_lod
[
j
]);
}
tensor
->
set_elem_type
(
P_INT32
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
mutable_int_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_int_data
()
->
mutable_data
(),
int32_data
.
data
(),
total_number
*
sizeof
(
int32_t
));
}
for
(
std
::
map
<
std
::
string
,
std
::
string
>::
const_iterator
iter
=
string_feed_map
.
begin
();
iter
!=
string_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
string
&
string_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
string_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
string_lod
=
lod_map
.
at
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
Tensor
*
tensor
=
req
.
add_tensor
();
for
(
uint32_t
j
=
0
;
j
<
string_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
string_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
string_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
string_lod
[
j
]);
}
tensor
->
set_elem_type
(
P_STRING
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
const
int
string_shape_size
=
string_shape
.
size
();
// string_shape[vec_idx] = [1];cause numpy has no datatype of string.
// we pass string via vector<vector<string> >.
if
(
string_shape_size
!=
1
)
{
LOG
(
ERROR
)
<<
"string_shape_size should be 1-D, but received is : "
<<
string_shape_size
;
return
-
1
;
}
switch
(
string_shape_size
)
{
case
1
:
{
tensor
->
add_data
(
string_data
);
break
;
}
}
}
return
0
;
}
std
::
string
PredictorOutputs
::
print
()
{
std
::
string
res
=
""
;
for
(
size_t
i
=
0
;
i
<
_datas
.
size
();
++
i
)
{
res
.
append
(
_datas
[
i
]
->
engine_name
);
res
.
append
(
":"
);
res
.
append
(
_datas
[
i
]
->
data
.
print
());
res
.
append
(
"
\n
"
);
}
return
res
;
}
void
PredictorOutputs
::
clear
()
{
_datas
.
clear
();
}
int
PredictorOutputs
::
parse_proto
(
const
Response
&
res
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
std
::
map
<
std
::
string
,
int
>&
fetch_name_to_type
,
PredictorOutputs
&
outputs
)
{
VLOG
(
2
)
<<
"get model output num"
;
uint32_t
model_num
=
res
.
outputs_size
();
VLOG
(
2
)
<<
"model num: "
<<
model_num
;
for
(
uint32_t
m_idx
=
0
;
m_idx
<
model_num
;
++
m_idx
)
{
VLOG
(
2
)
<<
"process model output index: "
<<
m_idx
;
auto
&
output
=
res
.
outputs
(
m_idx
);
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>
predictor_output
=
std
::
make_shared
<
PredictorOutputs
::
PredictorOutput
>
();
predictor_output
->
engine_name
=
output
.
engine_name
();
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>&
float_data_map
=
*
predictor_output
->
data
.
mutable_float_data_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>&
int64_data_map
=
*
predictor_output
->
data
.
mutable_int64_data_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>&
int32_data_map
=
*
predictor_output
->
data
.
mutable_int_data_map
();
std
::
map
<
std
::
string
,
std
::
string
>&
string_data_map
=
*
predictor_output
->
data
.
mutable_string_data_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
shape_map
=
*
predictor_output
->
data
.
mutable_shape_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
lod_map
=
*
predictor_output
->
data
.
mutable_lod_map
();
int
idx
=
0
;
for
(
auto
&
name
:
fetch_name
)
{
// int idx = _fetch_name_to_idx[name];
int
shape_size
=
output
.
tensor
(
idx
).
shape_size
();
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
" index "
<<
idx
<<
" shape size "
<<
shape_size
;
shape_map
[
name
].
resize
(
shape_size
);
for
(
int
i
=
0
;
i
<
shape_size
;
++
i
)
{
shape_map
[
name
][
i
]
=
output
.
tensor
(
idx
).
shape
(
i
);
}
int
lod_size
=
output
.
tensor
(
idx
).
lod_size
();
if
(
lod_size
>
0
)
{
lod_map
[
name
].
resize
(
lod_size
);
for
(
int
i
=
0
;
i
<
lod_size
;
++
i
)
{
lod_map
[
name
][
i
]
=
output
.
tensor
(
idx
).
lod
(
i
);
}
}
idx
+=
1
;
}
idx
=
0
;
for
(
auto
&
name
:
fetch_name
)
{
// int idx = _fetch_name_to_idx[name];
if
(
fetch_name_to_type
[
name
]
==
P_INT64
)
{
VLOG
(
2
)
<<
"ferch var "
<<
name
<<
"type int64"
;
int
size
=
output
.
tensor
(
idx
).
int64_data_size
();
int64_data_map
[
name
]
=
std
::
vector
<
int64_t
>
(
output
.
tensor
(
idx
).
int64_data
().
begin
(),
output
.
tensor
(
idx
).
int64_data
().
begin
()
+
size
);
}
else
if
(
fetch_name_to_type
[
name
]
==
P_FLOAT32
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type float"
;
int
size
=
output
.
tensor
(
idx
).
float_data_size
();
float_data_map
[
name
]
=
std
::
vector
<
float
>
(
output
.
tensor
(
idx
).
float_data
().
begin
(),
output
.
tensor
(
idx
).
float_data
().
begin
()
+
size
);
}
else
if
(
fetch_name_to_type
[
name
]
==
P_INT32
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type int32"
;
int
size
=
output
.
tensor
(
idx
).
int_data_size
();
int32_data_map
[
name
]
=
std
::
vector
<
int32_t
>
(
output
.
tensor
(
idx
).
int_data
().
begin
(),
output
.
tensor
(
idx
).
int_data
().
begin
()
+
size
);
}
idx
+=
1
;
}
outputs
.
add_data
(
predictor_output
);
}
return
0
;
}
}
// namespace client
}
// namespace paddle_serving
}
// namespace baidu
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录