Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
bda85979
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bda85979
编写于
3月 07, 2019
作者:
W
wangguibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Documentation
Change-Id: I9ba95e63ebc9f9d73847ff899517719a2ebc7502
上级
cfe58527
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
144 addition
and
0 deletion
+144
-0
doc/CLUSTERING.doc
doc/CLUSTERING.doc
+142
-0
doc/INDEX.md
doc/INDEX.md
+2
-0
未找到文件。
doc/CLUSTERING.doc
0 → 100644
浏览文件 @
bda85979
#搭建预测服务集群
从[客户端配置](CLIENT_CONFIGURE.md)中我们已经知道,通过在客户端SDK的配置文件predictors.prototxt适当配置,可以搭建多副本和多Variant的预测集群。以下以图像分类任务为例,在单机上模拟搭建单Variant的多副本、和多Variant的预测集群
## 1. 单Variant多副本的预测集群
### 1.1 在本机创建一个serving副本
首先复制一个sering目录
```shell
$ cd /path/to/paddle-serving/build/output/demo
$ cp -r serving/ serving_new/
$ cd serving_new/
```
在serving_new目录中,在conf/gflags.conf中增加如下一行,修改其启动端口为8011,这是为了让该副本监听不同端口
```shell
--port=8011
```
然后启动新副本
```shell
$ bin/serving&
```
### 1.2 修改client端配置,将新副本地址加入ip列表:
```shell
$ cd /path/to/paddle-serving/build/output/demo/client/image_classification
```
修改conf/predictors.prototxt ImageClassifyService部分如下所示
```JSON
predictors {
name: "ximage"
service_name: "baidu.paddle_serving.predictor.image_classification.ImageClassifyService"
endpoint_router: "WeightedRandomRender"
weighted_random_render_conf {
variant_weight_list: "50"
}
variants {
tag: "var1"
naming_conf {
cluster: "list://127.0.0.1:8010, 127.0.0.1:8011" # 在这里增加一个新的副本地址
}
}
}
```
重启client端
```shell
$ bin/ximage&
```
查看2个serving副本目录下是否均有收到请求:
```shell
$ cd /path/to/paddle-serving/build/output/demo/serving
$ tail -f log/serving.INFO
$ cd /path/to/paddle-serving/build/output/demo/serving_new
$ tail -f log/serving.INFO
```
## 2. 多Variant
### 2.1 本机创建新的serving副本
步骤同1.1节,略过
### 2.2 修改client配置,增加一个Variant
```shell
$ cd /path/to/paddle-serving/build/output/demo/client/image_classification
```
修改conf/predictors.prototxt ImageClassifyService部分如下所示
```JSON
predictors {
name: "ximage"
service_name: "baidu.paddle_serving.predictor.image_classification.ImageClassifyService"
endpoint_router: "WeightedRandomRender"
weighted_random_render_conf {
variant_weight_list: "50 | 50" # 一共2个variant,代表模型的2个版本。这里的权重代表调度的流量比例关系
}
variants {
tag: "var1"
naming_conf {
cluster: "list://127.0.0.1:8010"
}
}
variants { # 增加一个variant
tag: "var2"
naming_conf {
cluster: "list://127.0.0.1:8011"
}
}
}
```
重启client端
```shell
$ bin/ximage&
```
查看2个serving副本目录下是否均有收到请求:
```shell
$ cd /path/to/paddle-serving/build/output/demo/serving
$ tail -f log/serving.INFO
$ cd /path/to/paddle-serving/build/output/demo/serving_new
$ tail -f log/serving.INFO
```
查看client端是否有收到来自Variant1和Variant2的响应
```shell
$ cd /path/to/paddle-serving/build/output/demo/client/image_classification
$ tail -f log/ximage.INFO
```
以下是正常的输出
```
I0307 17:54:22.862087 24719 ximage.cpp:172] Debug string:
I0307 17:54:22.862650 24719 ximage.cpp:110] sample-0's classify result: n02112018,博美犬, prop: 0.522815
I0307 17:54:22.862666 24719 ximage.cpp:114] Succ call predictor[ximage], the tag is: var1, elapse_ms: 333
I0307 17:54:23.194780 24719 ximage.cpp:172] Debug string:
I0307 17:54:23.195322 24719 ximage.cpp:110] sample-0's classify result: n02112018,博美犬, prop: 0.522815
I0307 17:54:23.195334 24719 ximage.cpp:114] Succ call predictor[ximage], the tag is: var2, elapse_ms: 332
```
doc/INDEX.md
浏览文件 @
bda85979
[
Client Configure
](
CLIENT_CONFIGURE.md
)
[
Client Configure
](
CLIENT_CONFIGURE.md
)
[
How to Configure a Clustered Service
](
CLUSTERING.md
)
[
Creating a Prediction Service
](
CREATING.md
)
[
Creating a Prediction Service
](
CREATING.md
)
[
Design
](
DESIGN.md
)
[
Design
](
DESIGN.md
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录