Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
b6f7530b
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b6f7530b
编写于
7月 02, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Serving
into pipeline-update
上级
51b9e139
405245e4
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
485 addition
and
137 deletion
+485
-137
python/examples/blazeface/README.md
python/examples/blazeface/README.md
+23
-0
python/examples/blazeface/test_client.py
python/examples/blazeface/test_client.py
+20
-13
python/examples/criteo_ctr_with_cube/benchmark.py
python/examples/criteo_ctr_with_cube/benchmark.py
+14
-10
python/examples/criteo_ctr_with_cube/benchmark.sh
python/examples/criteo_ctr_with_cube/benchmark.sh
+8
-2
python/examples/criteo_ctr_with_cube/benchmark_batch.py
python/examples/criteo_ctr_with_cube/benchmark_batch.py
+0
-84
python/examples/criteo_ctr_with_cube/benchmark_batch.sh
python/examples/criteo_ctr_with_cube/benchmark_batch.sh
+0
-12
python/examples/criteo_ctr_with_cube/cube_prepare.sh
python/examples/criteo_ctr_with_cube/cube_prepare.sh
+1
-3
python/examples/ocr/README.md
python/examples/ocr/README.md
+25
-1
python/examples/ocr/ocr_rpc_client.py
python/examples/ocr/ocr_rpc_client.py
+193
-0
python/examples/ocr/ocr_web_client.sh
python/examples/ocr/ocr_web_client.sh
+1
-0
python/examples/ocr/ocr_web_server.py
python/examples/ocr/ocr_web_server.py
+158
-0
python/examples/ocr/test_rec.jpg
python/examples/ocr/test_rec.jpg
+0
-0
python/paddle_serving_app/models/model_list.py
python/paddle_serving_app/models/model_list.py
+3
-2
python/paddle_serving_app/reader/functional.py
python/paddle_serving_app/reader/functional.py
+1
-0
python/paddle_serving_app/reader/image_reader.py
python/paddle_serving_app/reader/image_reader.py
+24
-0
python/paddle_serving_app/reader/ocr_reader.py
python/paddle_serving_app/reader/ocr_reader.py
+14
-10
未找到文件。
python/examples/blazeface/README.md
0 → 100644
浏览文件 @
b6f7530b
# Blazeface
## Get Model
```
python -m paddle_serving_app.package --get_model blazeface
tar -xzvf blazeface.tar.gz
```
## RPC Service
### Start Service
```
python -m paddle_serving_server.serve --model serving_server --port 9494
```
### Client Prediction
```
python test_client.py serving_client/serving_client_conf.prototxt test.jpg
```
the result is in
`output`
folder, including a json file and image file with bounding boxes.
python/examples/
ocr/test_ocr_rec
_client.py
→
python/examples/
blazeface/test
_client.py
浏览文件 @
b6f7530b
...
...
@@ -13,19 +13,26 @@
# limitations under the License.
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
OCRReader
import
cv2
from
paddle_serving_app.reader
import
*
import
sys
import
numpy
as
np
preprocess
=
Sequential
([
File2Image
(),
Normalize
([
104
,
117
,
123
],
[
127.502231
,
127.502231
,
127.502231
],
False
)
])
postprocess
=
BlazeFacePostprocess
(
"label_list.txt"
,
"output"
)
client
=
Client
()
client
.
load_client_config
(
"ocr_rec_client/serving_client_conf.prototxt"
)
client
.
connect
([
"127.0.0.1:9292"
])
image_file_list
=
[
"./test_rec.jpg"
]
img
=
cv2
.
imread
(
image_file_list
[
0
])
ocr_reader
=
OCRReader
()
feed
=
{
"image"
:
ocr_reader
.
preprocess
([
img
])}
fetch
=
[
"ctc_greedy_decoder_0.tmp_0"
,
"softmax_0.tmp_0"
]
fetch_map
=
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
rec_res
=
ocr_reader
.
postprocess
(
fetch_map
)
print
(
image_file_list
[
0
])
print
(
rec_res
[
0
][
0
])
client
.
load_client_config
(
sys
.
argv
[
1
])
client
.
connect
([
'127.0.0.1:9494'
])
im_0
=
preprocess
(
sys
.
argv
[
2
])
tmp
=
Transpose
((
2
,
0
,
1
))
im
=
tmp
(
im_0
)
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
},
fetch
=
[
"detection_output_0.tmp_0"
])
fetch_map
[
"image"
]
=
sys
.
argv
[
2
]
fetch_map
[
"im_shape"
]
=
im_0
.
shape
postprocess
(
fetch_map
)
python/examples/criteo_ctr_with_cube/benchmark.py
浏览文件 @
b6f7530b
...
...
@@ -29,6 +29,7 @@ args = benchmark_args()
def
single_func
(
idx
,
resource
):
client
=
Client
()
print
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]])
client
.
load_client_config
(
'ctr_client_conf/serving_client_conf.prototxt'
)
client
.
connect
([
'127.0.0.1:9292'
])
batch
=
1
...
...
@@ -40,27 +41,29 @@ def single_func(idx, resource):
]
reader
=
dataset
.
infer_reader
(
test_filelists
[
len
(
test_filelists
)
-
40
:],
batch
,
buf_size
)
args
.
batch_size
=
1
if
args
.
request
==
"rpc"
:
fetch
=
[
"prob"
]
print
(
"Start Time"
)
start
=
time
.
time
()
itr
=
1000
for
ei
in
range
(
itr
):
if
args
.
batch_size
==
1
:
data
=
reader
().
next
()
feed_dict
=
{}
feed_dict
[
'dense_input'
]
=
data
[
0
][
0
]
for
i
in
range
(
1
,
27
):
feed_dict
[
"embedding_{}.tmp_0"
.
format
(
i
-
1
)]
=
data
[
0
][
i
]
result
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch
)
if
args
.
batch_size
>
0
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
data
=
reader
().
next
()
feed_dict
=
{}
feed_dict
[
'dense_input'
]
=
data
[
0
][
0
]
for
i
in
range
(
1
,
27
):
feed_dict
[
"embedding_{}.tmp_0"
.
format
(
i
-
1
)]
=
data
[
0
][
i
]
feed_batch
.
append
(
feed_dict
)
result
=
client
.
predict
(
feed
=
feed_batch
,
fetch
=
fetch
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
raise
(
"Not support http service."
)
end
=
time
.
time
()
qps
=
itr
/
(
end
-
start
)
qps
=
itr
*
args
.
batch_size
/
(
end
-
start
)
return
[[
end
-
start
,
qps
]]
...
...
@@ -70,6 +73,7 @@ if __name__ == '__main__':
#result = single_func(0, {"endpoint": endpoint_list})
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
print
(
result
)
avg_cost
=
0
qps
=
0
for
i
in
range
(
args
.
thread
):
...
...
python/examples/criteo_ctr_with_cube/benchmark.sh
浏览文件 @
b6f7530b
rm
profile_log
batch_size
=
1
export
FLAGS_profile_client
=
1
export
FLAGS_profile_server
=
1
for
thread_num
in
1 2 4 8 16
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--model
ctr_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
for
batch_size
in
1 4 16 64 256
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
serving_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"batch size :
$batch_size
"
echo
"thread num :
$thread_num
"
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
2 profile
>>
profile_log
done
done
python/examples/criteo_ctr_with_cube/benchmark_batch.py
已删除
100755 → 0
浏览文件 @
51b9e139
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_client
import
Client
import
sys
import
os
import
criteo
as
criteo
import
time
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
from
paddle_serving_client.metric
import
auc
args
=
benchmark_args
()
def
single_func
(
idx
,
resource
):
client
=
Client
()
print
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]])
client
.
load_client_config
(
'ctr_client_conf/serving_client_conf.prototxt'
)
client
.
connect
([
'127.0.0.1:9292'
])
batch
=
1
buf_size
=
100
dataset
=
criteo
.
CriteoDataset
()
dataset
.
setup
(
1000001
)
test_filelists
=
[
"./raw_data/part-%d"
%
x
for
x
in
range
(
len
(
os
.
listdir
(
"./raw_data"
)))
]
reader
=
dataset
.
infer_reader
(
test_filelists
[
len
(
test_filelists
)
-
40
:],
batch
,
buf_size
)
if
args
.
request
==
"rpc"
:
fetch
=
[
"prob"
]
start
=
time
.
time
()
itr
=
1000
for
ei
in
range
(
itr
):
if
args
.
batch_size
>
1
:
feed_batch
=
[]
for
bi
in
range
(
args
.
batch_size
):
data
=
reader
().
next
()
feed_dict
=
{}
feed_dict
[
'dense_input'
]
=
data
[
0
][
0
]
for
i
in
range
(
1
,
27
):
feed_dict
[
"embedding_{}.tmp_0"
.
format
(
i
-
1
)]
=
data
[
0
][
i
]
feed_batch
.
append
(
feed_dict
)
result
=
client
.
predict
(
feed
=
feed_batch
,
fetch
=
fetch
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
raise
(
"Not support http service."
)
end
=
time
.
time
()
qps
=
itr
*
args
.
batch_size
/
(
end
-
start
)
return
[[
end
-
start
,
qps
]]
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9292"
]
#result = single_func(0, {"endpoint": endpoint_list})
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
print
(
result
)
avg_cost
=
0
qps
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
*
2
+
0
]
qps
+=
result
[
0
][
i
*
2
+
1
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
print
(
"qps {} ins/s"
.
format
(
qps
))
python/examples/criteo_ctr_with_cube/benchmark_batch.sh
已删除
100755 → 0
浏览文件 @
51b9e139
rm
profile_log
for
thread_num
in
1 2 4 8 16
do
for
batch_size
in
1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT
/bin/python benchmark_batch.py
--thread
$thread_num
--batch_size
$batch_size
--model
serving_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
2 profile
>>
profile_log
done
done
python/examples/criteo_ctr_with_cube/cube_prepare.sh
浏览文件 @
b6f7530b
...
...
@@ -16,7 +16,5 @@
mkdir
-p
cube_model
mkdir
-p
cube/data
./seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature
./cube/cube-builder
-dict_name
=
test_dict
-job_mode
=
base
-last_version
=
0
-cur_version
=
0
-depend_version
=
0
-input_path
=
./cube_model
-output_path
=
${
PWD
}
/cube/data
-shard_num
=
1
-only_build
=
false
mv
./cube/data/0_0/test_dict_part0/
*
./cube/data/
cd
cube
&&
./cube
cd
cube
&&
./cube
python/examples/ocr/README.md
浏览文件 @
b6f7530b
...
...
@@ -4,18 +4,42 @@
```
python -m paddle_serving_app.package --get_model ocr_rec
tar -xzvf ocr_rec.tar.gz
python -m paddle_serving_app.package --get_model ocr_det
tar -xzvf ocr_det.tar.gz
```
## RPC Service
### Start Service
For the following two code block, please check your devices and pick one
for GPU device
```
python -m paddle_serving_server_gpu.serve --model ocr_rec_model --port 9292 --gpu_id 0
python -m paddle_serving_server_gpu.serve --model ocr_det_model --port 9293 --gpu_id 0
```
for CPU device
```
python -m paddle_serving_server.serve --model ocr_rec_model --port 9292
python -m paddle_serving_server.serve --model ocr_det_model --port 9293
```
### Client Prediction
```
python test_ocr_rec_client.py
python ocr_rpc_client.py
```
## Web Service
### Start Service
```
python -m paddle_serving_server_gpu.serve --model ocr_det_model --port 9293 --gpu_id 0
python ocr_web_server.py
```
### Client Prediction
```
sh ocr_web_client.sh
```
python/examples/ocr/ocr_rpc_client.py
0 → 100644
浏览文件 @
b6f7530b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
OCRReader
import
cv2
import
sys
import
numpy
as
np
import
os
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
Sequential
,
File2Image
,
ResizeByFactor
from
paddle_serving_app.reader
import
Div
,
Normalize
,
Transpose
from
paddle_serving_app.reader
import
DBPostProcess
,
FilterBoxes
import
time
import
re
def
sorted_boxes
(
dt_boxes
):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes
=
dt_boxes
.
shape
[
0
]
sorted_boxes
=
sorted
(
dt_boxes
,
key
=
lambda
x
:
(
x
[
0
][
1
],
x
[
0
][
0
]))
_boxes
=
list
(
sorted_boxes
)
for
i
in
range
(
num_boxes
-
1
):
if
abs
(
_boxes
[
i
+
1
][
0
][
1
]
-
_boxes
[
i
][
0
][
1
])
<
10
and
\
(
_boxes
[
i
+
1
][
0
][
0
]
<
_boxes
[
i
][
0
][
0
]):
tmp
=
_boxes
[
i
]
_boxes
[
i
]
=
_boxes
[
i
+
1
]
_boxes
[
i
+
1
]
=
tmp
return
_boxes
def
get_rotate_crop_image
(
img
,
points
):
#img = cv2.imread(img)
img_height
,
img_width
=
img
.
shape
[
0
:
2
]
left
=
int
(
np
.
min
(
points
[:,
0
]))
right
=
int
(
np
.
max
(
points
[:,
0
]))
top
=
int
(
np
.
min
(
points
[:,
1
]))
bottom
=
int
(
np
.
max
(
points
[:,
1
]))
img_crop
=
img
[
top
:
bottom
,
left
:
right
,
:].
copy
()
points
[:,
0
]
=
points
[:,
0
]
-
left
points
[:,
1
]
=
points
[:,
1
]
-
top
img_crop_width
=
int
(
np
.
linalg
.
norm
(
points
[
0
]
-
points
[
1
]))
img_crop_height
=
int
(
np
.
linalg
.
norm
(
points
[
0
]
-
points
[
3
]))
pts_std
=
np
.
float32
([[
0
,
0
],
[
img_crop_width
,
0
],
\
[
img_crop_width
,
img_crop_height
],
[
0
,
img_crop_height
]])
M
=
cv2
.
getPerspectiveTransform
(
points
,
pts_std
)
dst_img
=
cv2
.
warpPerspective
(
img_crop
,
M
,
(
img_crop_width
,
img_crop_height
),
borderMode
=
cv2
.
BORDER_REPLICATE
)
dst_img_height
,
dst_img_width
=
dst_img
.
shape
[
0
:
2
]
if
dst_img_height
*
1.0
/
dst_img_width
>=
1.5
:
dst_img
=
np
.
rot90
(
dst_img
)
return
dst_img
def
read_det_box_file
(
filename
):
with
open
(
filename
,
'r'
)
as
f
:
line
=
f
.
readline
()
a
,
b
,
c
=
int
(
line
.
split
(
' '
)[
0
]),
int
(
line
.
split
(
' '
)[
1
]),
int
(
line
.
split
(
' '
)[
2
])
dt_boxes
=
np
.
zeros
((
a
,
b
,
c
)).
astype
(
np
.
float32
)
line
=
f
.
readline
()
for
i
in
range
(
a
):
for
j
in
range
(
b
):
line
=
f
.
readline
()
dt_boxes
[
i
,
j
,
0
],
dt_boxes
[
i
,
j
,
1
]
=
float
(
line
.
split
(
' '
)[
0
]),
float
(
line
.
split
(
' '
)[
1
])
line
=
f
.
readline
()
def
resize_norm_img
(
img
,
max_wh_ratio
):
import
math
imgC
,
imgH
,
imgW
=
3
,
32
,
320
imgW
=
int
(
32
*
max_wh_ratio
)
h
=
img
.
shape
[
0
]
w
=
img
.
shape
[
1
]
ratio
=
w
/
float
(
h
)
if
math
.
ceil
(
imgH
*
ratio
)
>
imgW
:
resized_w
=
imgW
else
:
resized_w
=
int
(
math
.
ceil
(
imgH
*
ratio
))
resized_image
=
cv2
.
resize
(
img
,
(
resized_w
,
imgH
))
resized_image
=
resized_image
.
astype
(
'float32'
)
resized_image
=
resized_image
.
transpose
((
2
,
0
,
1
))
/
255
resized_image
-=
0.5
resized_image
/=
0.5
padding_im
=
np
.
zeros
((
imgC
,
imgH
,
imgW
),
dtype
=
np
.
float32
)
padding_im
[:,
:,
0
:
resized_w
]
=
resized_image
return
padding_im
def
main
():
client1
=
Client
()
client1
.
load_client_config
(
"ocr_det_client/serving_client_conf.prototxt"
)
client1
.
connect
([
"127.0.0.1:9293"
])
client2
=
Client
()
client2
.
load_client_config
(
"ocr_rec_client/serving_client_conf.prototxt"
)
client2
.
connect
([
"127.0.0.1:9292"
])
read_image_file
=
File2Image
()
preprocess
=
Sequential
([
ResizeByFactor
(
32
,
960
),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
]),
Transpose
(
(
2
,
0
,
1
))
])
post_func
=
DBPostProcess
({
"thresh"
:
0.3
,
"box_thresh"
:
0.5
,
"max_candidates"
:
1000
,
"unclip_ratio"
:
1.5
,
"min_size"
:
3
})
filter_func
=
FilterBoxes
(
10
,
10
)
ocr_reader
=
OCRReader
()
files
=
[
"./imgs/{}"
.
format
(
f
)
for
f
in
os
.
listdir
(
'./imgs'
)
if
re
.
match
(
r
'[0-9]+.*\.jpg|[0-9]+.*\.png'
,
f
)
]
#files = ["2.jpg"]*30
#files = ["rctw/rctw/train/images/image_{}.jpg".format(i) for i in range(500)]
time_all
=
0
time_det_all
=
0
time_rec_all
=
0
for
name
in
files
:
#print(name)
im
=
read_image_file
(
name
)
ori_h
,
ori_w
,
_
=
im
.
shape
time1
=
time
.
time
()
img
=
preprocess
(
im
)
_
,
new_h
,
new_w
=
img
.
shape
ratio_list
=
[
float
(
new_h
)
/
ori_h
,
float
(
new_w
)
/
ori_w
]
#print(new_h, new_w, ori_h, ori_w)
time_before_det
=
time
.
time
()
outputs
=
client1
.
predict
(
feed
=
{
"image"
:
img
},
fetch
=
[
"concat_1.tmp_0"
])
time_after_det
=
time
.
time
()
time_det_all
+=
(
time_after_det
-
time_before_det
)
#print(outputs)
dt_boxes_list
=
post_func
(
outputs
[
"concat_1.tmp_0"
],
[
ratio_list
])
dt_boxes
=
filter_func
(
dt_boxes_list
[
0
],
[
ori_h
,
ori_w
])
dt_boxes
=
sorted_boxes
(
dt_boxes
)
feed_list
=
[]
img_list
=
[]
max_wh_ratio
=
0
for
i
,
dtbox
in
enumerate
(
dt_boxes
):
boximg
=
get_rotate_crop_image
(
im
,
dt_boxes
[
i
])
img_list
.
append
(
boximg
)
h
,
w
=
boximg
.
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
for
img
in
img_list
:
norm_img
=
resize_norm_img
(
img
,
max_wh_ratio
)
#norm_img = norm_img[np.newaxis, :]
feed
=
{
"image"
:
norm_img
}
feed_list
.
append
(
feed
)
#fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
fetch
=
[
"ctc_greedy_decoder_0.tmp_0"
]
time_before_rec
=
time
.
time
()
if
len
(
feed_list
)
==
0
:
continue
fetch_map
=
client2
.
predict
(
feed
=
feed_list
,
fetch
=
fetch
)
time_after_rec
=
time
.
time
()
time_rec_all
+=
(
time_after_rec
-
time_before_rec
)
rec_res
=
ocr_reader
.
postprocess
(
fetch_map
)
#for res in rec_res:
# print(res[0].encode("utf-8"))
time2
=
time
.
time
()
time_all
+=
(
time2
-
time1
)
print
(
"rpc+det time: {}"
.
format
(
time_all
/
len
(
files
)))
if
__name__
==
'__main__'
:
main
()
python/examples/ocr/ocr_web_client.sh
0 → 100644
浏览文件 @
b6f7530b
curl
-H
"Content-Type:application/json"
-X
POST
-d
'{"feed":[{"image": "https://paddle-serving.bj.bcebos.com/others/1.jpg"}], "fetch": ["res"]}'
http://127.0.0.1:9292/ocr/prediction
python/examples/ocr/ocr_web_server.py
0 → 100644
浏览文件 @
b6f7530b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
OCRReader
import
cv2
import
sys
import
numpy
as
np
import
os
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
Sequential
,
URL2Image
,
ResizeByFactor
from
paddle_serving_app.reader
import
Div
,
Normalize
,
Transpose
from
paddle_serving_app.reader
import
DBPostProcess
,
FilterBoxes
from
paddle_serving_server_gpu.web_service
import
WebService
import
time
import
re
class
OCRService
(
WebService
):
def
init_det_client
(
self
,
det_port
,
det_client_config
):
self
.
det_preprocess
=
Sequential
([
ResizeByFactor
(
32
,
960
),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
]),
Transpose
(
(
2
,
0
,
1
))
])
self
.
det_client
=
Client
()
self
.
det_client
.
load_client_config
(
det_client_config
)
self
.
det_client
.
connect
([
"127.0.0.1:{}"
.
format
(
det_port
)])
def
preprocess
(
self
,
feed
=
[],
fetch
=
[]):
img_url
=
feed
[
0
][
"image"
]
#print(feed, img_url)
read_from_url
=
URL2Image
()
im
=
read_from_url
(
img_url
)
ori_h
,
ori_w
,
_
=
im
.
shape
det_img
=
self
.
det_preprocess
(
im
)
#print("det_img", det_img, det_img.shape)
det_out
=
self
.
det_client
.
predict
(
feed
=
{
"image"
:
det_img
},
fetch
=
[
"concat_1.tmp_0"
])
#print("det_out", det_out)
def
sorted_boxes
(
dt_boxes
):
num_boxes
=
dt_boxes
.
shape
[
0
]
sorted_boxes
=
sorted
(
dt_boxes
,
key
=
lambda
x
:
(
x
[
0
][
1
],
x
[
0
][
0
]))
_boxes
=
list
(
sorted_boxes
)
for
i
in
range
(
num_boxes
-
1
):
if
abs
(
_boxes
[
i
+
1
][
0
][
1
]
-
_boxes
[
i
][
0
][
1
])
<
10
and
\
(
_boxes
[
i
+
1
][
0
][
0
]
<
_boxes
[
i
][
0
][
0
]):
tmp
=
_boxes
[
i
]
_boxes
[
i
]
=
_boxes
[
i
+
1
]
_boxes
[
i
+
1
]
=
tmp
return
_boxes
def
get_rotate_crop_image
(
img
,
points
):
img_height
,
img_width
=
img
.
shape
[
0
:
2
]
left
=
int
(
np
.
min
(
points
[:,
0
]))
right
=
int
(
np
.
max
(
points
[:,
0
]))
top
=
int
(
np
.
min
(
points
[:,
1
]))
bottom
=
int
(
np
.
max
(
points
[:,
1
]))
img_crop
=
img
[
top
:
bottom
,
left
:
right
,
:].
copy
()
points
[:,
0
]
=
points
[:,
0
]
-
left
points
[:,
1
]
=
points
[:,
1
]
-
top
img_crop_width
=
int
(
np
.
linalg
.
norm
(
points
[
0
]
-
points
[
1
]))
img_crop_height
=
int
(
np
.
linalg
.
norm
(
points
[
0
]
-
points
[
3
]))
pts_std
=
np
.
float32
([[
0
,
0
],
[
img_crop_width
,
0
],
\
[
img_crop_width
,
img_crop_height
],
[
0
,
img_crop_height
]])
M
=
cv2
.
getPerspectiveTransform
(
points
,
pts_std
)
dst_img
=
cv2
.
warpPerspective
(
img_crop
,
M
,
(
img_crop_width
,
img_crop_height
),
borderMode
=
cv2
.
BORDER_REPLICATE
)
dst_img_height
,
dst_img_width
=
dst_img
.
shape
[
0
:
2
]
if
dst_img_height
*
1.0
/
dst_img_width
>=
1.5
:
dst_img
=
np
.
rot90
(
dst_img
)
return
dst_img
def
resize_norm_img
(
img
,
max_wh_ratio
):
import
math
imgC
,
imgH
,
imgW
=
3
,
32
,
320
imgW
=
int
(
32
*
max_wh_ratio
)
h
=
img
.
shape
[
0
]
w
=
img
.
shape
[
1
]
ratio
=
w
/
float
(
h
)
if
math
.
ceil
(
imgH
*
ratio
)
>
imgW
:
resized_w
=
imgW
else
:
resized_w
=
int
(
math
.
ceil
(
imgH
*
ratio
))
resized_image
=
cv2
.
resize
(
img
,
(
resized_w
,
imgH
))
resized_image
=
resized_image
.
astype
(
'float32'
)
resized_image
=
resized_image
.
transpose
((
2
,
0
,
1
))
/
255
resized_image
-=
0.5
resized_image
/=
0.5
padding_im
=
np
.
zeros
((
imgC
,
imgH
,
imgW
),
dtype
=
np
.
float32
)
padding_im
[:,
:,
0
:
resized_w
]
=
resized_image
return
padding_im
_
,
new_h
,
new_w
=
det_img
.
shape
filter_func
=
FilterBoxes
(
10
,
10
)
post_func
=
DBPostProcess
({
"thresh"
:
0.3
,
"box_thresh"
:
0.5
,
"max_candidates"
:
1000
,
"unclip_ratio"
:
1.5
,
"min_size"
:
3
})
ratio_list
=
[
float
(
new_h
)
/
ori_h
,
float
(
new_w
)
/
ori_w
]
dt_boxes_list
=
post_func
(
det_out
[
"concat_1.tmp_0"
],
[
ratio_list
])
dt_boxes
=
filter_func
(
dt_boxes_list
[
0
],
[
ori_h
,
ori_w
])
dt_boxes
=
sorted_boxes
(
dt_boxes
)
feed_list
=
[]
img_list
=
[]
max_wh_ratio
=
0
for
i
,
dtbox
in
enumerate
(
dt_boxes
):
boximg
=
get_rotate_crop_image
(
im
,
dt_boxes
[
i
])
img_list
.
append
(
boximg
)
h
,
w
=
boximg
.
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
for
img
in
img_list
:
norm_img
=
resize_norm_img
(
img
,
max_wh_ratio
)
feed
=
{
"image"
:
norm_img
}
feed_list
.
append
(
feed
)
fetch
=
[
"ctc_greedy_decoder_0.tmp_0"
]
#print("feed_list", feed_list)
return
feed_list
,
fetch
def
postprocess
(
self
,
feed
=
{},
fetch
=
[],
fetch_map
=
None
):
#print(fetch_map)
ocr_reader
=
OCRReader
()
rec_res
=
ocr_reader
.
postprocess
(
fetch_map
)
res_lst
=
[]
for
res
in
rec_res
:
res_lst
.
append
(
res
[
0
])
fetch_map
[
"res"
]
=
res_lst
del
fetch_map
[
"ctc_greedy_decoder_0.tmp_0"
]
del
fetch_map
[
"ctc_greedy_decoder_0.tmp_0.lod"
]
return
fetch_map
ocr_service
=
OCRService
(
name
=
"ocr"
)
ocr_service
.
load_model_config
(
"ocr_rec_model"
)
ocr_service
.
prepare_server
(
workdir
=
"workdir"
,
port
=
9292
)
ocr_service
.
init_det_client
(
det_port
=
9293
,
det_client_config
=
"ocr_det_client/serving_client_conf.prototxt"
)
ocr_service
.
run_rpc_service
()
ocr_service
.
run_web_service
()
python/examples/ocr/test_rec.jpg
已删除
100644 → 0
浏览文件 @
51b9e139
6.2 KB
python/paddle_serving_app/models/model_list.py
浏览文件 @
b6f7530b
...
...
@@ -24,14 +24,15 @@ class ServingModels(object):
"SentimentAnalysis"
]
=
[
"senta_bilstm"
,
"senta_bow"
,
"senta_cnn"
]
self
.
model_dict
[
"SemanticRepresentation"
]
=
[
"ernie"
]
self
.
model_dict
[
"ChineseWordSegmentation"
]
=
[
"lac"
]
self
.
model_dict
[
"ObjectDetection"
]
=
[
"faster_rcnn"
,
"yolov4"
]
self
.
model_dict
[
"ObjectDetection"
]
=
[
"faster_rcnn"
,
"yolov4"
,
"blazeface"
]
self
.
model_dict
[
"ImageSegmentation"
]
=
[
"unet"
,
"deeplabv3"
,
"deeplabv3+cityscapes"
]
self
.
model_dict
[
"ImageClassification"
]
=
[
"resnet_v2_50_imagenet"
,
"mobilenet_v2_imagenet"
]
self
.
model_dict
[
"TextDetection"
]
=
[
"ocr_det
ection
"
]
self
.
model_dict
[
"TextDetection"
]
=
[
"ocr_det"
]
self
.
model_dict
[
"OCR"
]
=
[
"ocr_rec"
]
image_class_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/"
...
...
python/paddle_serving_app/reader/functional.py
浏览文件 @
b6f7530b
...
...
@@ -29,6 +29,7 @@ def normalize(img, mean, std, channel_first):
else
:
img_mean
=
np
.
array
(
mean
).
reshape
((
1
,
1
,
3
))
img_std
=
np
.
array
(
std
).
reshape
((
1
,
1
,
3
))
img
=
np
.
array
(
img
).
astype
(
"float32"
)
img
-=
img_mean
img
/=
img_std
return
img
...
...
python/paddle_serving_app/reader/image_reader.py
浏览文件 @
b6f7530b
...
...
@@ -440,6 +440,30 @@ class RCNNPostprocess(object):
self
.
label_file
,
self
.
output_dir
)
class
BlazeFacePostprocess
(
RCNNPostprocess
):
def
clip_bbox
(
self
,
bbox
,
im_size
=
None
):
h
=
1.
if
im_size
is
None
else
im_size
[
0
]
w
=
1.
if
im_size
is
None
else
im_size
[
1
]
xmin
=
max
(
min
(
bbox
[
0
],
w
),
0.
)
ymin
=
max
(
min
(
bbox
[
1
],
h
),
0.
)
xmax
=
max
(
min
(
bbox
[
2
],
w
),
0.
)
ymax
=
max
(
min
(
bbox
[
3
],
h
),
0.
)
return
xmin
,
ymin
,
xmax
,
ymax
def
_get_bbox_result
(
self
,
fetch_map
,
fetch_name
,
clsid2catid
):
result
=
{}
is_bbox_normalized
=
True
#for blaze face, set true here
output
=
fetch_map
[
fetch_name
]
lod
=
[
fetch_map
[
fetch_name
+
'.lod'
]]
lengths
=
self
.
_offset_to_lengths
(
lod
)
np_data
=
np
.
array
(
output
)
result
[
'bbox'
]
=
(
np_data
,
lengths
)
result
[
'im_id'
]
=
np
.
array
([[
0
]])
result
[
"im_shape"
]
=
np
.
array
(
fetch_map
[
"im_shape"
]).
astype
(
np
.
int32
)
bbox_results
=
self
.
_bbox2out
([
result
],
clsid2catid
,
is_bbox_normalized
)
return
bbox_results
class
Sequential
(
object
):
"""
Args:
...
...
python/paddle_serving_app/reader/ocr_reader.py
浏览文件 @
b6f7530b
...
...
@@ -182,22 +182,26 @@ class OCRReader(object):
return
norm_img_batch
[
0
]
def
postprocess
(
self
,
outputs
):
def
postprocess
(
self
,
outputs
,
with_score
=
False
):
rec_res
=
[]
rec_idx_lod
=
outputs
[
"ctc_greedy_decoder_0.tmp_0.lod"
]
predict_lod
=
outputs
[
"softmax_0.tmp_0.lod"
]
rec_idx_batch
=
outputs
[
"ctc_greedy_decoder_0.tmp_0"
]
if
with_score
:
predict_lod
=
outputs
[
"softmax_0.tmp_0.lod"
]
for
rno
in
range
(
len
(
rec_idx_lod
)
-
1
):
beg
=
rec_idx_lod
[
rno
]
end
=
rec_idx_lod
[
rno
+
1
]
rec_idx_tmp
=
rec_idx_batch
[
beg
:
end
,
0
]
preds_text
=
self
.
char_ops
.
decode
(
rec_idx_tmp
)
beg
=
predict_lod
[
rno
]
end
=
predict_lod
[
rno
+
1
]
probs
=
outputs
[
"softmax_0.tmp_0"
][
beg
:
end
,
:]
ind
=
np
.
argmax
(
probs
,
axis
=
1
)
blank
=
probs
.
shape
[
1
]
valid_ind
=
np
.
where
(
ind
!=
(
blank
-
1
))[
0
]
score
=
np
.
mean
(
probs
[
valid_ind
,
ind
[
valid_ind
]])
rec_res
.
append
([
preds_text
,
score
])
if
with_score
:
beg
=
predict_lod
[
rno
]
end
=
predict_lod
[
rno
+
1
]
probs
=
outputs
[
"softmax_0.tmp_0"
][
beg
:
end
,
:]
ind
=
np
.
argmax
(
probs
,
axis
=
1
)
blank
=
probs
.
shape
[
1
]
valid_ind
=
np
.
where
(
ind
!=
(
blank
-
1
))[
0
]
score
=
np
.
mean
(
probs
[
valid_ind
,
ind
[
valid_ind
]])
rec_res
.
append
([
preds_text
,
score
])
else
:
rec_res
.
append
([
preds_text
])
return
rec_res
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录