@@ -45,10 +45,11 @@ nvidia-docker exec -it test bash
```
```shell
pip install paddle-serving-client==0.3.2
pip install paddle-serving-server==0.3.2 # CPU
pip install paddle-serving-server-gpu==0.3.2.post9 # GPU with CUDA9.0
pip install paddle-serving-server-gpu==0.3.2.post10 # GPU with CUDA10.0
pip install paddle-serving-client==0.4.0
pip install paddle-serving-server==0.4.0 # CPU
pip install paddle-serving-server-gpu==0.4.0.post9 # GPU with CUDA9.0
pip install paddle-serving-server-gpu==0.4.0.post10 # GPU with CUDA10.0
pip install paddle-serving-server-gpu==0.4.0.trt # GPU with CUDA10.1+TensorRT
```
You may need to use a domestic mirror source (in China, you can use the Tsinghua mirror source, add `-i https://pypi.tuna.tsinghua.edu.cn/simple` to pip command) to speed up the download.
...
...
@@ -57,7 +58,7 @@ If you need install modules compiled with develop branch, please download packag
Packages of paddle-serving-server and paddle-serving-server-gpu support Centos 6/7, Ubuntu 16/18, Windows 10.
Packages of paddle-serving-client and paddle-serving-app support Linux and Windows, but paddle-serving-client only support python2.7/3.6/3.7.
Packages of paddle-serving-client and paddle-serving-app support Linux and Windows, but paddle-serving-client only support python2.7/3.5/3.6/3.7.
Recommended to install paddle >= 1.8.4.
...
...
@@ -113,11 +114,11 @@ tar -xzf uci_housing.tar.gz
Paddle Serving provides HTTP and RPC based service for users to access
### HTTP service
### RPC service
Paddle Serving provides a built-in python module called `paddle_serving_server.serve` that can start a RPC service or a http service with one-line command. If we specify the argument `--name uci`, it means that we will have a HTTP service with a url of `$IP:$PORT/uci/prediction`
A user can also start a RPC service with `paddle_serving_server.serve`. RPC service is usually faster than HTTP service, although a user needs to do some coding based on Paddle Serving's python client API. Note that we do not specify `--name` here.
| `ir_optim` | - | - | Enable analysis and optimization of calculation graph |
| `use_mkl` (Only for cpu version) | - | - | Run inference with MKL |
| `use_trt` (Only for trt version) | - | - | Run inference with TensorRT |
Here, we use `curl` to send a HTTP POST request to the service we just started. Users can use any python library to send HTTP POST as well, e.g, [requests](https://requests.readthedocs.io/en/master/).
A user can also start a RPC service with `paddle_serving_server.serve`. RPC service is usually faster than HTTP service, although a user needs to do some coding based on Paddle Serving's python client API. Note that we do not specify `--name` here.
Here, `client.predict` function has two arguments. `feed` is a `python dict` with model input variable alias name and values. `fetch` assigns the prediction variables to be returned from servers. In the example, the name of `"x"` and `"price"` are assigned when the servable model is saved during training.
...
...
@@ -169,6 +155,40 @@ Here, `client.predict` function has two arguments. `feed` is a `python dict` wit
-**Highly concurrent and efficient communication** between clients and servers supported.
-**Multiple programming languages** supported on client side, such as Golang, C++ and python.
### WEB service
Users can also put the data format processing logic on the server side, so that they can directly use curl to access the service, refer to the following case whose path is `python/examples/fit_a_line`
The mirror comes with `paddle_serving_server`, `paddle_serving_client`, and `paddle_serving_app` corresponding to the mirror tag version. If users don’t need to change the version, they can use it directly, which is suitable for environments without extranet services.
If you need to change the version, please refer to the instructions on the homepage to download the pip package of the corresponding version.
## GPU
...
...
@@ -100,7 +46,7 @@ The GPU version is basically the same as the CPU version, with only some differe
Refer to [this document](DOCKER_IMAGES.md) for a docker image, the following is an example of an `cuda9.0-cudnn7` image:
When running the GPU Server, you need to set the GPUs used by the prediction service through the `--gpu_ids` option, and the CPU is used by default. An error will be reported when the value of `--gpu_ids` exceeds the environment variable `CUDA_VISIBLE_DEVICES`. The following example specifies to use a GPU with index 0:
The `-p` option is to map the `9292` port of the container to the `9292` port of the host.
### Install PaddleServing
The mirror comes with `paddle_serving_server_gpu`, `paddle_serving_client`, and `paddle_serving_app` corresponding to the mirror tag version. If users don’t need to change the version, they can use it directly, which is suitable for environments without extranet services.
If you need to change the version, please refer to the instructions on the homepage to download the pip package of the corresponding version.
## Attention
## Precautious
Runtime images cannot be used for compilation. If you want to compile from source, refer to [COMPILE](COMPILE.md).
@@ -8,7 +8,7 @@ This document guides users how to build Paddle Serving service on the Windows pl
### Running Paddle Serving on Native Windows System
**Configure Python environment variables to PATH**: First, you need to add the directory where the Python executable program is located to the PATH. Usually in **System Properties/My Computer Properties**-**Advanced**-**Environment Variables**, click Path and add the path at the beginning. For example, `C:\Users\$USER\AppData\Local\Programs\Python\Python36`, and finally click **OK** continuously. If you enter python on Powershell, you can enter the python interactive interface, indicating that the environment variable configuration is successful.
**Configure Python environment variables to PATH**: **We only support Python 3.5+ on Native Windows System.**. First, you need to add the directory where the Python executable program is located to the PATH. Usually in **System Properties/My Computer Properties**-**Advanced**-**Environment Variables**, click Path and add the path at the beginning. For example, `C:\Users\$USER\AppData\Local\Programs\Python\Python36`, and finally click **OK** continuously. If you enter python on Powershell, you can enter the python interactive interface, indicating that the environment variable configuration is successful.
**Install wget**: Because all the downloads in the tutorial and the built-in model download function in `paddle_serving_app` all use the wget tool, download the binary package at the [link](http://gnuwin32.sourceforge.net/packages/wget.htm), unzip and copy it to `C:\Windows\System32`, if there is a security prompt, you need to pass it.
In order to facilitate users to use java for development, we provide the compiled Serving project to be placed in the java mirror. The way to get the mirror and enter the development environment is
docker run --rm -dit --name java_serving hub.baidubce.com/paddlepaddle/serving:0.4.0-java
docker exec -it java_serving bash
cd Serving/java
```
The Serving folder is at the develop branch when the docker image is generated. You need to git pull to the latest version or git checkout to the desired branch.
### Install client dependencies
Due to the large number of dependent libraries, the image has been compiled once at the time of generation, and the user can perform the following operations
### Install package
```
mvn compile
mvn install
...
...
@@ -9,18 +27,49 @@ mvn compile
mvn install
```
### Start Server
### Start the server
take the fit_a_line demo as example
Take the fit_a_line model as an example, the server starts
python -m paddle_serving_server_gpu.serve --model yolov4_model --port 9393 --gpu_ids 0 --use_multilang & #It needs to be executed in GPU Docker, otherwise the execution method of CPU must be used.
# The case of yolov4 needs to specify a picture as input
```
### Customization guidance
The above example is running in CPU mode. If GPU mode is required, there are two options.
The first is that GPU Serving and Java Client are in the same image. After starting the corresponding image, the user needs to move /Serving/java in the java image to the corresponding image.
The second is to deploy GPU Serving and Java Client separately. If they are on the same host, you can learn the IP address of the corresponding container through ifconfig, and then when you connect to client.connect in `examples/src/main/java/PaddleServingClientExample.java` Make changes to the endpoint, and then compile it again. Or select `--net=host` to bind the network device of docker and host when docker starts, so that it can run directly without customizing java code.
**It should be noted that in the example, all models need to use `--use_multilang` to start GRPC multi-programming language support, and the port number is 9393. If you need another port, you need to modify it in the java file**
**Currently Serving has launched the Pipeline mode (see [Pipeline Serving](../doc/PIPELINE_SERVING.md) for details). The next version (0.4.1) of the Pipeline Serving Client for Java will be released. **